btcollider/bf/algo/sha3.c
2018-04-04 15:18:34 +02:00

674 lines
17 KiB
C

/*-
* Copyright (c) 2015 Taylor R. Campbell
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* SHA-3: FIPS-202, Permutation-Based Hash and Extendable-Ouptut Functions
*/
#define _POSIX_C_SOURCE 200809L
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "keccak.h"
#include "sha3.h"
#define MIN(a,b) ((a) < (b) ? (a) : (b))
void *(*volatile sha3_explicit_memset_impl)(void *, int, size_t) = &memset;
static void *
explicit_memset(void *buf, int c, size_t n)
{
return (*sha3_explicit_memset_impl)(buf, c, n);
}
static inline uint64_t
le64dec(const void *buf)
{
const uint8_t *p = buf;
return (((uint64_t)p[0]) |
((uint64_t)p[1] << 8) |
((uint64_t)p[2] << 16) |
((uint64_t)p[3] << 24) |
((uint64_t)p[4] << 32) |
((uint64_t)p[5] << 40) |
((uint64_t)p[6] << 48) |
((uint64_t)p[7] << 56));
}
static inline void
le64enc(void *buf, uint64_t v)
{
uint8_t *p = buf;
*p++ = v; v >>= 8;
*p++ = v; v >>= 8;
*p++ = v; v >>= 8;
*p++ = v; v >>= 8;
*p++ = v; v >>= 8;
*p++ = v; v >>= 8;
*p++ = v; v >>= 8;
*p++ = v;
}
/*
* Common body. All the SHA-3 functions share code structure. They
* differ only in the size of the chunks they split the message into:
* for digest size d, they are split into chunks of 200 - d bytes.
*/
static inline unsigned
sha3_rate(unsigned d)
{
const unsigned cw = 2*d/8; /* capacity in words */
return 25 - cw;
}
static void
sha3_init(struct sha3 *C, unsigned rw)
{
unsigned iw;
C->nb = 8*rw;
for (iw = 0; iw < 25; iw++)
C->A[iw] = 0;
}
static void
sha3_update(struct sha3 *C, const uint8_t *data, size_t len, unsigned rw)
{
uint64_t T;
unsigned ib, iw; /* index of byte/word */
assert(0 < C->nb);
/* If there's a partial word, try to fill it. */
if ((C->nb % 8) != 0) {
T = 0;
for (ib = 0; ib < MIN(len, C->nb % 8); ib++)
T |= (uint64_t)data[ib] << (8*ib);
C->A[rw - (C->nb + 7)/8] ^= T << (8*(8 - (C->nb % 8)));
C->nb -= ib;
data += ib;
len -= ib;
/* If we filled the buffer, permute now. */
if (C->nb == 0) {
keccakf1600(C->A);
C->nb = 8*rw;
}
/* If that exhausted the input, we're done. */
if (len == 0)
return;
}
/* At a word boundary. Fill any partial buffer. */
assert((C->nb % 8) == 0);
if (C->nb < 8*rw) {
for (iw = 0; iw < MIN(len, C->nb)/8; iw++)
C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
C->nb -= 8*iw;
data += 8*iw;
len -= 8*iw;
/* If we filled the buffer, permute now. */
if (C->nb == 0) {
keccakf1600(C->A);
C->nb = 8*rw;
} else {
/* Otherwise, less than a word left. */
assert(len < 8);
goto partial;
}
}
/* At a buffer boundary. Absorb input one buffer at a time. */
assert(C->nb == 8*rw);
while (8*rw <= len) {
for (iw = 0; iw < rw; iw++)
C->A[iw] ^= le64dec(data + 8*iw);
keccakf1600(C->A);
data += 8*rw;
len -= 8*rw;
}
/* Partially fill the buffer with as many words as we can. */
for (iw = 0; iw < len/8; iw++)
C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
C->nb -= 8*iw;
data += 8*iw;
len -= 8*iw;
partial:
/* Partially fill the last word with as many bytes as we can. */
assert(len < 8);
assert(0 < C->nb);
assert((C->nb % 8) == 0);
T = 0;
for (ib = 0; ib < len; ib++)
T |= (uint64_t)data[ib] << (8*ib);
C->A[rw - C->nb/8] ^= T;
C->nb -= ib;
assert(0 < C->nb);
}
static inline void
sha3_or_keccak_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw, uint64_t padding)
{
unsigned nw, iw;
assert(d <= 8*25);
assert(0 < C->nb);
/* Append 01, pad with 10*1 up to buffer boundary, LSB first. */
nw = (C->nb + 7)/8;
assert(0 < nw);
assert(nw <= rw);
C->A[rw - nw] ^= padding << (8*(8*nw - C->nb));
C->A[rw - 1] ^= 0x8000000000000000ULL;
/* Permute one last time. */
keccakf1600(C->A);
/* Reveal the first 8d bits of state, forget 1600-8d of them. */
for (iw = 0; iw < d/8; iw++)
le64enc(h + 8*iw, C->A[iw]);
h += 8*iw;
d -= 8*iw;
if (0 < d) {
/* For SHA3-224, we need to expose a partial word. */
uint64_t T = C->A[iw];
do {
*h++ = T & 0xff;
T >>= 8;
} while (--d);
}
(void)explicit_memset(C->A, 0, sizeof C->A);
C->nb = 0;
}
static void
sha3_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw)
{
sha3_or_keccak_final(h, d, C, rw, 0x06);
}
static void
keccak_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw)
{
sha3_or_keccak_final(h, d, C, rw, 0x01);
}
static void
shake_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw)
{
unsigned nw, iw;
assert(0 < C->nb);
/* Append 1111, pad with 10*1 up to buffer boundary, LSB first. */
nw = (C->nb + 7)/8;
assert(0 < nw);
assert(nw <= rw);
C->A[rw - nw] ^= (uint64_t)0x1f << (8*(8*nw - C->nb));
C->A[rw - 1] ^= 0x8000000000000000ULL;
/* Permute, reveal first rw words of state, repeat. */
while (8*rw <= d) {
keccakf1600(C->A);
for (iw = 0; iw < rw; iw++)
le64enc(h + 8*iw, C->A[iw]);
h += 8*iw;
d -= 8*iw;
}
/*
* If 8*rw (the output rate in bytes) does not divide d, more
* words are wanted: permute again and reveal a little more.
*/
if (0 < d) {
keccakf1600(C->A);
for (iw = 0; iw < d/8; iw++)
le64enc(h + 8*iw, C->A[iw]);
h += 8*iw;
d -= 8*iw;
/*
* If 8 does not divide d, more bytes are wanted:
* reveal them.
*/
if (0 < d) {
uint64_t T = C->A[iw];
do {
*h++ = T & 0xff;
T >>= 8;
} while (--d);
}
}
(void)explicit_memset(C->A, 0, sizeof C->A);
C->nb = 0;
}
void
SHA3_224_Init(SHA3_224_CTX *C)
{
sha3_init(&C->C224, sha3_rate(SHA3_224_DIGEST_LENGTH));
}
void
SHA3_224_Update(SHA3_224_CTX *C, const uint8_t *data, size_t len)
{
sha3_update(&C->C224, data, len, sha3_rate(SHA3_224_DIGEST_LENGTH));
}
void
SHA3_224_Final(uint8_t h[SHA3_224_DIGEST_LENGTH], SHA3_224_CTX *C)
{
sha3_final(h, SHA3_224_DIGEST_LENGTH, &C->C224,
sha3_rate(SHA3_224_DIGEST_LENGTH));
}
void
SHA3_256_Init(SHA3_256_CTX *C)
{
sha3_init(&C->C256, sha3_rate(SHA3_256_DIGEST_LENGTH));
}
void
SHA3_256_Update(SHA3_256_CTX *C, const uint8_t *data, size_t len)
{
sha3_update(&C->C256, data, len, sha3_rate(SHA3_256_DIGEST_LENGTH));
}
void
SHA3_256_Final(uint8_t h[SHA3_256_DIGEST_LENGTH], SHA3_256_CTX *C)
{
sha3_final(h, SHA3_256_DIGEST_LENGTH, &C->C256,
sha3_rate(SHA3_256_DIGEST_LENGTH));
}
void
SHA3_384_Init(SHA3_384_CTX *C)
{
sha3_init(&C->C384, sha3_rate(SHA3_384_DIGEST_LENGTH));
}
void
SHA3_384_Update(SHA3_384_CTX *C, const uint8_t *data, size_t len)
{
sha3_update(&C->C384, data, len, sha3_rate(SHA3_384_DIGEST_LENGTH));
}
void
SHA3_384_Final(uint8_t h[SHA3_384_DIGEST_LENGTH], SHA3_384_CTX *C)
{
sha3_final(h, SHA3_384_DIGEST_LENGTH, &C->C384,
sha3_rate(SHA3_384_DIGEST_LENGTH));
}
void
SHA3_512_Init(SHA3_512_CTX *C)
{
sha3_init(&C->C512, sha3_rate(SHA3_512_DIGEST_LENGTH));
}
void
SHA3_512_Update(SHA3_512_CTX *C, const uint8_t *data, size_t len)
{
sha3_update(&C->C512, data, len, sha3_rate(SHA3_512_DIGEST_LENGTH));
}
void
SHA3_512_Final(uint8_t h[SHA3_512_DIGEST_LENGTH], SHA3_512_CTX *C)
{
sha3_final(h, SHA3_512_DIGEST_LENGTH, &C->C512,
sha3_rate(SHA3_512_DIGEST_LENGTH));
}
void
SHAKE128_Init(SHAKE128_CTX *C)
{
sha3_init(&C->C128, sha3_rate(128/8));
}
void
SHAKE128_Update(SHAKE128_CTX *C, const uint8_t *data, size_t len)
{
sha3_update(&C->C128, data, len, sha3_rate(128/8));
}
void
SHAKE128_Final(uint8_t *h, size_t d, SHAKE128_CTX *C)
{
shake_final(h, d, &C->C128, sha3_rate(128/8));
}
void
SHAKE256_Init(SHAKE256_CTX *C)
{
sha3_init(&C->C256, sha3_rate(256/8));
}
void
SHAKE256_Update(SHAKE256_CTX *C, const uint8_t *data, size_t len)
{
sha3_update(&C->C256, data, len, sha3_rate(256/8));
}
void
SHAKE256_Final(uint8_t *h, size_t d, SHAKE256_CTX *C)
{
shake_final(h, d, &C->C256, sha3_rate(256/8));
}
void
KECCAK_256_Final(uint8_t h[SHA3_256_DIGEST_LENGTH], SHA3_256_CTX *C)
{
keccak_final(h, SHA3_256_DIGEST_LENGTH, &C->C256,
sha3_rate(SHA3_256_DIGEST_LENGTH));
}
void
KECCAK_384_Final(uint8_t h[SHA3_384_DIGEST_LENGTH], SHA3_384_CTX *C)
{
keccak_final(h, SHA3_384_DIGEST_LENGTH, &C->C384,
sha3_rate(SHA3_384_DIGEST_LENGTH));
}
void
KECCAK_512_Final(uint8_t h[SHA3_512_DIGEST_LENGTH], SHA3_512_CTX *C)
{
keccak_final(h, SHA3_512_DIGEST_LENGTH, &C->C512,
sha3_rate(SHA3_512_DIGEST_LENGTH));
}
static void
sha3_selftest_prng(void *buf, size_t len, uint32_t seed)
{
uint8_t *p = buf;
size_t n = len;
uint32_t t, a, b;
a = 0xdead4bad * seed;
b = 1;
while (n--) {
t = a + b;
*p++ = t >> 24;
a = b;
b = t;
}
}
int
SHA3_Selftest(void)
{
const uint8_t d224_0[] = { /* SHA3-224(0-bit) */
0x6b,0x4e,0x03,0x42,0x36,0x67,0xdb,0xb7,
0x3b,0x6e,0x15,0x45,0x4f,0x0e,0xb1,0xab,
0xd4,0x59,0x7f,0x9a,0x1b,0x07,0x8e,0x3f,
0x5b,0x5a,0x6b,0xc7,
};
const uint8_t d256_0[] = { /* SHA3-256(0-bit) */
0xa7,0xff,0xc6,0xf8,0xbf,0x1e,0xd7,0x66,
0x51,0xc1,0x47,0x56,0xa0,0x61,0xd6,0x62,
0xf5,0x80,0xff,0x4d,0xe4,0x3b,0x49,0xfa,
0x82,0xd8,0x0a,0x4b,0x80,0xf8,0x43,0x4a,
};
const uint8_t d384_0[] = { /* SHA3-384(0-bit) */
0x0c,0x63,0xa7,0x5b,0x84,0x5e,0x4f,0x7d,
0x01,0x10,0x7d,0x85,0x2e,0x4c,0x24,0x85,
0xc5,0x1a,0x50,0xaa,0xaa,0x94,0xfc,0x61,
0x99,0x5e,0x71,0xbb,0xee,0x98,0x3a,0x2a,
0xc3,0x71,0x38,0x31,0x26,0x4a,0xdb,0x47,
0xfb,0x6b,0xd1,0xe0,0x58,0xd5,0xf0,0x04,
};
const uint8_t d512_0[] = { /* SHA3-512(0-bit) */
0xa6,0x9f,0x73,0xcc,0xa2,0x3a,0x9a,0xc5,
0xc8,0xb5,0x67,0xdc,0x18,0x5a,0x75,0x6e,
0x97,0xc9,0x82,0x16,0x4f,0xe2,0x58,0x59,
0xe0,0xd1,0xdc,0xc1,0x47,0x5c,0x80,0xa6,
0x15,0xb2,0x12,0x3a,0xf1,0xf5,0xf9,0x4c,
0x11,0xe3,0xe9,0x40,0x2c,0x3a,0xc5,0x58,
0xf5,0x00,0x19,0x9d,0x95,0xb6,0xd3,0xe3,
0x01,0x75,0x85,0x86,0x28,0x1d,0xcd,0x26,
};
const uint8_t shake128_0_41[] = { /* SHAKE128(0-bit, 41) */
0x7f,0x9c,0x2b,0xa4,0xe8,0x8f,0x82,0x7d,
0x61,0x60,0x45,0x50,0x76,0x05,0x85,0x3e,
0xd7,0x3b,0x80,0x93,0xf6,0xef,0xbc,0x88,
0xeb,0x1a,0x6e,0xac,0xfa,0x66,0xef,0x26,
0x3c,0xb1,0xee,0xa9,0x88,0x00,0x4b,0x93,0x10,
};
const uint8_t shake256_0_73[] = { /* SHAKE256(0-bit, 73) */
0x46,0xb9,0xdd,0x2b,0x0b,0xa8,0x8d,0x13,
0x23,0x3b,0x3f,0xeb,0x74,0x3e,0xeb,0x24,
0x3f,0xcd,0x52,0xea,0x62,0xb8,0x1b,0x82,
0xb5,0x0c,0x27,0x64,0x6e,0xd5,0x76,0x2f,
0xd7,0x5d,0xc4,0xdd,0xd8,0xc0,0xf2,0x00,
0xcb,0x05,0x01,0x9d,0x67,0xb5,0x92,0xf6,
0xfc,0x82,0x1c,0x49,0x47,0x9a,0xb4,0x86,
0x40,0x29,0x2e,0xac,0xb3,0xb7,0xc4,0xbe,
0x14,0x1e,0x96,0x61,0x6f,0xb1,0x39,0x57,0x69,
};
const uint8_t d224_1600[] = { /* SHA3-224(200 * 0xa3) */
0x93,0x76,0x81,0x6a,0xba,0x50,0x3f,0x72,
0xf9,0x6c,0xe7,0xeb,0x65,0xac,0x09,0x5d,
0xee,0xe3,0xbe,0x4b,0xf9,0xbb,0xc2,0xa1,
0xcb,0x7e,0x11,0xe0,
};
const uint8_t d256_1600[] = { /* SHA3-256(200 * 0xa3) */
0x79,0xf3,0x8a,0xde,0xc5,0xc2,0x03,0x07,
0xa9,0x8e,0xf7,0x6e,0x83,0x24,0xaf,0xbf,
0xd4,0x6c,0xfd,0x81,0xb2,0x2e,0x39,0x73,
0xc6,0x5f,0xa1,0xbd,0x9d,0xe3,0x17,0x87,
};
const uint8_t d384_1600[] = { /* SHA3-384(200 * 0xa3) */
0x18,0x81,0xde,0x2c,0xa7,0xe4,0x1e,0xf9,
0x5d,0xc4,0x73,0x2b,0x8f,0x5f,0x00,0x2b,
0x18,0x9c,0xc1,0xe4,0x2b,0x74,0x16,0x8e,
0xd1,0x73,0x26,0x49,0xce,0x1d,0xbc,0xdd,
0x76,0x19,0x7a,0x31,0xfd,0x55,0xee,0x98,
0x9f,0x2d,0x70,0x50,0xdd,0x47,0x3e,0x8f,
};
const uint8_t d512_1600[] = { /* SHA3-512(200 * 0xa3) */
0xe7,0x6d,0xfa,0xd2,0x20,0x84,0xa8,0xb1,
0x46,0x7f,0xcf,0x2f,0xfa,0x58,0x36,0x1b,
0xec,0x76,0x28,0xed,0xf5,0xf3,0xfd,0xc0,
0xe4,0x80,0x5d,0xc4,0x8c,0xae,0xec,0xa8,
0x1b,0x7c,0x13,0xc3,0x0a,0xdf,0x52,0xa3,
0x65,0x95,0x84,0x73,0x9a,0x2d,0xf4,0x6b,
0xe5,0x89,0xc5,0x1c,0xa1,0xa4,0xa8,0x41,
0x6d,0xf6,0x54,0x5a,0x1c,0xe8,0xba,0x00,
};
const uint8_t shake128_1600_41[] = { /* SHAKE128(200 * 0xa3, 41) */
0x13,0x1a,0xb8,0xd2,0xb5,0x94,0x94,0x6b,
0x9c,0x81,0x33,0x3f,0x9b,0xb6,0xe0,0xce,
0x75,0xc3,0xb9,0x31,0x04,0xfa,0x34,0x69,
0xd3,0x91,0x74,0x57,0x38,0x5d,0xa0,0x37,
0xcf,0x23,0x2e,0xf7,0x16,0x4a,0x6d,0x1e,0xb4,
};
const uint8_t shake256_1600_73[] = { /* SHAKE256(200 * 0xa3, 73) */
0xcd,0x8a,0x92,0x0e,0xd1,0x41,0xaa,0x04,
0x07,0xa2,0x2d,0x59,0x28,0x86,0x52,0xe9,
0xd9,0xf1,0xa7,0xee,0x0c,0x1e,0x7c,0x1c,
0xa6,0x99,0x42,0x4d,0xa8,0x4a,0x90,0x4d,
0x2d,0x70,0x0c,0xaa,0xe7,0x39,0x6e,0xce,
0x96,0x60,0x44,0x40,0x57,0x7d,0xa4,0xf3,
0xaa,0x22,0xae,0xb8,0x85,0x7f,0x96,0x1c,
0x4c,0xd8,0xe0,0x6f,0x0a,0xe6,0x61,0x0b,
0x10,0x48,0xa7,0xf6,0x4e,0x10,0x74,0xcd,0x62,
};
const uint8_t d0[] = {
0x6c,0x02,0x1a,0xc6,0x65,0xaf,0x80,0xfb,
0x52,0xe6,0x2d,0x27,0xe5,0x02,0x88,0x84,
0xec,0x1c,0x0c,0xe7,0x0b,0x94,0x55,0x83,
0x19,0xf2,0xbf,0x09,0x86,0xeb,0x1a,0xbb,
0xc3,0x0d,0x1c,0xef,0x22,0xfe,0xc5,0x4c,
0x45,0x90,0x66,0x14,0x00,0x6e,0xc8,0x79,
0xdf,0x1e,0x02,0xbd,0x75,0xe9,0x60,0xd8,
0x60,0x39,0x85,0xc9,0xc4,0xee,0x33,0xab,
};
const unsigned mlen[6] = { 0, 3, 128, 129, 255, 1024 };
uint8_t m[1024], d[73];
SHA3_224_CTX sha3224;
SHA3_256_CTX sha3256;
SHA3_384_CTX sha3384;
SHA3_512_CTX sha3512;
SHAKE128_CTX shake128;
SHAKE256_CTX shake256;
SHA3_512_CTX ctx;
unsigned mi;
/*
* NIST test vectors from
* <http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing>:
* 0-bit, 1600-bit repeated 0xa3 (= 0b10100011).
*/
SHA3_224_Init(&sha3224);
SHA3_224_Final(d, &sha3224);
if (memcmp(d, d224_0, 28) != 0)
return -1;
SHA3_256_Init(&sha3256);
SHA3_256_Final(d, &sha3256);
if (memcmp(d, d256_0, 32) != 0)
return -1;
SHA3_384_Init(&sha3384);
SHA3_384_Final(d, &sha3384);
if (memcmp(d, d384_0, 48) != 0)
return -1;
SHA3_512_Init(&sha3512);
SHA3_512_Final(d, &sha3512);
if (memcmp(d, d512_0, 64) != 0)
return -1;
SHAKE128_Init(&shake128);
SHAKE128_Final(d, 41, &shake128);
if (memcmp(d, shake128_0_41, 41) != 0)
return -1;
SHAKE256_Init(&shake256);
SHAKE256_Final(d, 73, &shake256);
if (memcmp(d, shake256_0_73, 73) != 0)
return -1;
(void)memset(m, 0xa3, 200);
SHA3_224_Init(&sha3224);
SHA3_224_Update(&sha3224, m, 200);
SHA3_224_Final(d, &sha3224);
if (memcmp(d, d224_1600, 28) != 0)
return -1;
SHA3_256_Init(&sha3256);
SHA3_256_Update(&sha3256, m, 200);
SHA3_256_Final(d, &sha3256);
if (memcmp(d, d256_1600, 32) != 0)
return -1;
SHA3_384_Init(&sha3384);
SHA3_384_Update(&sha3384, m, 200);
SHA3_384_Final(d, &sha3384);
if (memcmp(d, d384_1600, 48) != 0)
return -1;
SHA3_512_Init(&sha3512);
SHA3_512_Update(&sha3512, m, 200);
SHA3_512_Final(d, &sha3512);
if (memcmp(d, d512_1600, 64) != 0)
return -1;
SHAKE128_Init(&shake128);
SHAKE128_Update(&shake128, m, 200);
SHAKE128_Final(d, 41, &shake128);
if (memcmp(d, shake128_1600_41, 41) != 0)
return -1;
SHAKE256_Init(&shake256);
SHAKE256_Update(&shake256, m, 200);
SHAKE256_Final(d, 73, &shake256);
if (memcmp(d, shake256_1600_73, 73) != 0)
return -1;
/*
* Hand-crufted test vectors with unaligned message lengths.
*/
SHA3_512_Init(&ctx);
for (mi = 0; mi < 6; mi++) {
sha3_selftest_prng(m, mlen[mi], (224/8)*mlen[mi]);
SHA3_224_Init(&sha3224);
SHA3_224_Update(&sha3224, m, mlen[mi]);
SHA3_224_Final(d, &sha3224);
SHA3_512_Update(&ctx, d, 224/8);
}
for (mi = 0; mi < 6; mi++) {
sha3_selftest_prng(m, mlen[mi], (256/8)*mlen[mi]);
SHA3_256_Init(&sha3256);
SHA3_256_Update(&sha3256, m, mlen[mi]);
SHA3_256_Final(d, &sha3256);
SHA3_512_Update(&ctx, d, 256/8);
}
for (mi = 0; mi < 6; mi++) {
sha3_selftest_prng(m, mlen[mi], (384/8)*mlen[mi]);
SHA3_384_Init(&sha3384);
SHA3_384_Update(&sha3384, m, mlen[mi]);
SHA3_384_Final(d, &sha3384);
SHA3_512_Update(&ctx, d, 384/8);
}
for (mi = 0; mi < 6; mi++) {
sha3_selftest_prng(m, mlen[mi], (512/8)*mlen[mi]);
SHA3_512_Init(&sha3512);
SHA3_512_Update(&sha3512, m, mlen[mi]);
SHA3_512_Final(d, &sha3512);
SHA3_512_Update(&ctx, d, 512/8);
}
SHA3_512_Final(d, &ctx);
if (memcmp(d, d0, 64) != 0)
return -1;
return 0;
}