
High Performance Computing

Roofline
Project 3

Johannes Winklehner
1226104

Armin Friedl
1053597

June 24, 2016

A roofline model for a multicore-processor is obtained by calcuating the theoretical
peak performance of the processor and benchmarking the peak memory bandwith.

Two artificial computational kernels with operational intensities of
1

16
GFLOPs/Byte

and 8 GFLOPs/Byte are devised. The performance of the two kernels is then
compared to the theoretical calculations in the roofline model.

Contents

1 Introduction 2

2 Roofline Model 2
2.1 Theoretical Peak Performance . 2
2.2 Memory Bandwidth . 3
2.3 Graph . 3

3 Kernels 4
3.1 1/16 6= 1/16. Or: The Fancy Arithmetics of a Compiler 5
3.2 The 1/16 OI Kernel . 6
3.3 The 8 OI Kernel . 6

3.3.1 Some Further 8/1 Kernel . 8

1

1 Introduction

2 Roofline Model

In this section a roofline model [8] will be created for the Intel® Core™ i5-4210U. In Section 2.1
the theoretical floating-point peak performance of the CPU is calculated. Section 2.2 then shows
memory bandwidth measurements gathered with NUMA-STREAM [1]. These ingredients are
put together into the roofline model which is constructed in Section 2.3.

2.1 Theoretical Peak Performance

The CPU under test was a Intel® Core™ i5-4210U. Table 1 shows the relevant specifications
for this processor according to Intel Ark [6].

Specification Value

of Cores 2
of Threads 4
Microarchitecture Haswell
Max Turbo Frequency 2.7 GHz
Processor Base Frequency 1.7 GHz
Instruction Set Extension SSE 4.1/4.2, AVX 2.0

Table 1: Relevant processor specifications

According to Intel [3, 5-2 Vol.1] the 4th generation Intel Core processors provide FMA (Fused
Multiply-Add) units and AVX (Advanced Vector Extension). Whereas AVX can be the main
driver for floating-point peak performance, the peak in this case is mainly determined by the
FMA unit.

In general an FMA unit is capable of multiple floating-point (FP) operations during a single
cycle. This is directly backed by the hardware (operations are “fused” together). Specifically
the FMA unit of a Haswell processor is capable of “[...] 256-bit floating-point instructions to
perform computation on 256-bit vectors” [3, 5-28 Vol.1].
Since even a DP (double-precision) FP element has only 64-bit, 256-bit would be obviously

overprovisioned. But the FMA instructions do not just take scalars as arguments. Instead up
to 4 DP FP elements can be packed together in a vector and operations are conducted pairwise.
An example mulitply-add instruction is given in [4].

Unfortunately no definite source could be found but according to Shimpi [7] the Haswell
architecture is built with 2 FMA units per core. Taking all together we get:

1. Two operations are conducted at once (“fused”) and up to four DP FP elements can be
packed into the argument vectors. At optimal untilization the FMA unit therefore provides
2 ∗ 4 = 8 DP FLOPs each cycle.

2. Two cores each with two FMAs can then calculate 2 ∗ 2 ∗ 8 = 32 DP FLOPs

At maximum turbo frequency the processor therefore has a theoretical peak performance of
32 ∗ 2.7 = 86.4 GFLOP/s. At base frequency it is capable of 32 ∗ 1.7 = 54.4 GFLOP/s.

2

2.2 Memory Bandwidth

To benchmark the memory bandwidth NUMA-STREAM [1] was used. The binary ran on a
Fedora 23 system with kernel 4.5.7-200.fc23.x86_64 x86_64 in multi-user.target to turn
off as many distractors as possible. Compilation was done with gcc and the following options:
-O3 -std=c99 -fopenmp -lnuma -DN=80000000 -DNTIMES=100.

Again the details of the processor architecture offer a bit of a challenge. The i5-4210U is hyper
threaded meaning it provides 4 hardware threads on 2 physical cores. It is not immediately
obvious how many threads NUMA-STREAM should be configured with. For this test both
configurations1 were tested and the best one was chosen. The results for NUMA-STREAM
configured with two threads are in Listing 1. Prefixes are given in metric scale, i.e. M = 106 not
220.The highest achieved rate was 10608 MB/s with the triad function. The triad function is the
most demanding kernel of NUMA-STREAM defined at [2] as a[j] = b[j]+scalar*c[j]. All
other tested configurations had worse results for all 4 kernels although with at most 300 MB/s
difference.

Function Rate (MB/s) Avg time Min time Max time
Copy: 9373.3846 0.1368 0.1366 0.1390
Scale: 9414.1304 0.1361 0.1360 0.1381
Add: 10614.6002 0.1812 0.1809 0.1835
Triad: 10607.7910 0.1813 0.1810 0.1834

Listing 1: NUMA-STREAM results for two threads

2.3 Graph

The graph of the roofline model is defined by [8]:

Attainable GFLOP/s = Min(Peak FLOP,
Peak Memory Bandwidth*Operational Intensity)

The resulting graph for the values obtained in Section 2.1 and Section 2.2 can be seen in Figure 1.

1plus two configurations with 8 and 1 threads respectively for cross checking

3

1/32 1/8 1/2 2 8 32

Operational Itensity (FLOP/Byte)

0

0

1

2

4

8

16

32

64

128

A
tt
a
in
a
b
le
 G
FL
O
P
/s

Peak Floating-Point Performance

Peak Memory Bandwidth

Figure 1: Roofline graph from the values obtained in Section 2.1 and Section 2.2

3 Kernels

Kernels with operational intensity (OI) of 1/16 and 8 have been implemented. The kernels are
introduced in the following sections.

However the effective operational intensity of a given kernel in a high-level language (as C) is
not obvious when compiled to processor instructions. Furthermore, due to today’s advanced
processor architecture, adaptions had to be made to account for special capabilites. This resulted
in several different kernels. Not all of them are machine independent with regard to operational
intensity.

All kernels were compiled with gcc 5.3.1 and different options. The compilation was checked
with objdump -d -M intel-mnemonics. For a more elaborate analysis of the disassembly on
the testers computer, please refer to the header file aikern.h that should come with this report.
Additionally Makefile provides all informations about the used and tested compiler options.

Good results2 were achieved with -O2 -mavx -mfma. But -O2 -maxv -mfma is a tradeoff
between the best possible results and obviously correct compiled code. In fact the disassembly
almost looks like handwritten. If even more optimization is wanted -O3 can be used. To fully
utilize FMA with packed doubles -Ofast or -Ofast -ffast-math has to be used. Be aware
that more optimization than -O2 -maxv -mfma results in a very hard to understand disassembly.
-ffast-math can even introduce rounding errors or reduce the executed FLOPs. It is not
completely obvious that the highly optimized compiled still has the wanted operational intensity.
-O0 never works out.

2all, including the special FMA kernels, use only expected memory access, doing everything else in registers

4

Remark: Contrary to popular believe the roofline model is built atop the notion of operational intensity3 kernels.
The differences to arithmetic intensities are outlined in Williams, Waterman, and Patterson [8]. Depending on
the definition used these two terms are not necessarily interchangeable. The notion of operational intensity in
the following sections might be what some would understand by the term arithmetic itensity.

3.1 1/16 6= 1/16. Or: The Fancy Arithmetics of a Compiler

In order to understand why the following kernels are implemented the way they are, an example
of a badly behaving 1/16 OI kernel is given in Listing 2. The kernel has one FP operation (∗)
and reads 16 bytes (a[i], b[i]) from memory. But in practice this algorithm does not work as
expected. There are several ways how one could write the same kernel.

• Submitting volatile. This results in the loop being optimized away completely for
optimization levels above -O0.

• Using no optimization i.e. -O0. No advanced features of the processor will be used (e.g.,
FMA requires at least -O2). Also just about everything is read and written from and to
the stack. Even loop variables. One may now assume that this is cached anyway — or
one ain’t so.

• Using volatile and optimization. When volatile is used gcc reads and writes variable
tmp from and to the stack, even in -O3. If tmp is cached or not is hard to predict. It’s
not improbable but relying on that assumption can yield wrong results.

• Using register, volatile and optimization. Unfortunately register just advises the
compiler to use a register. It does not force the compiler to do so. Seemingly volatile
overrules register in this case – tmp is read and written from and to the stack. Again
assuming any caching behaviour is adventurous at least.

In the worst case found (no optimization, no volatile, no register) this results in reads of
16 bytes (a[i],b[i]) plus 8 bytes (i), and writes of 16 bytes (i, tmp assignment). Making no
caching assumptions this results in an effective operational intensity of 1/40 for a superficial 1/16
OI kernel. For more complex kernels the results get even worse. A triad t=a*b+c will store
easy-to-miss intermediate results on the stack if no special care is taken.

To prevent this, one could write assembly directly or rely on compiler intrinsics. The kernels
in this report though consist just of normal C code which was hand-crafted until an acceptable
compilation was reached. The generated machine code was disassembled and manually checked
for hidden memory access. The results are therefore compiler and machine specific, but should
be quite generalizable for the most part.

1 volatile register double tmp = 0.1;
2 for(size_t i=0; i<size; i++)
3 tmp = a[i] * b[i];

Listing 2: Simple 1/16 kernel with questionable compiled form

3FLOPs against bytes written to DRAM

5

3.2 The 1/16 OI Kernel

Two 1/16 kernels have been implemented. The kernel in Listing 3 is a standard kernel which does
not assume special processor capabilities. The second kernel in Listing 4 however is designed to
make use of a processor’s FMA unit.
The simple kernel in Listing 3 reads 8 bytes (a[i]) once for both operands of ∗ and writes 8

bytes (again to a[i]). This results in 16 byte operations. Only one FP instruction is executed,
namely ∗. At -O2 the loop variable is held in a register. This results in an 1/16 OI kernel.

1 #pragma omp parallel for
2 for(size_t i=0; i<size; i++)
3 a[i] = a[i] * a[i];

Listing 3: Simple 1/16 OI kernel

The FMA aware kernel in Listing 4 is a bit more involved. First a triad operation is used (∗
and + operations have to be balanced). This results in 2 FP instructions executed per round.
3 ∗ 8 = 24 bytes have to be read (a[i], b[i], c[i]) and 8 bytes have to be written (a[i]), in sum 32
byte operations. This results in an 2/32 =

1/16 OI kernel. The loop variable is again held in a
register.

Be aware that the FMA kernel cannot be used on a non-FMA processor. For the FMA aware
kernel to work correctly it is important that (i) the processor has an FMA unit (ii) the aikern.c
library is compiled with at least -O2 -mavx -mfma (iii) the compiled binary really makes use an
FMA instruction (such as vfmadd132sd [5] or even vfmadd132pd [4] on the testers machine).
Otherwise the results are meaningless due to write-outs of intermediary values.
Also note that in order to use the full capabilities of Intel’s FMA the doubles must be

packed. This happens if -Ofast is given to gcc in addition. However this also triggers other
optimizations such that the disassembly gets long and complex. It is not immediately obvious
that the generated disassembly is correct. But no instructions could be found that do not solely
use registers, except loading and storing data from and to the arrays – just as wanted.

1 #pragma omp parallel for
2 for(size_t i=0; i<size; i++)
3 a[i] = a[i] * b[i] + c[i];

Listing 4: FMA aware 1/16 OI kernel

3.3 The 8 OI Kernel

In this section the implemented 8 OI kernels are shown. Listing 6 is a simple 8 OI kernel which
should work on any processor. The kernel in Listing 7 is tailored for processors with an FMA
unit. For the kernels macros were used to repeat the floating point instructions. In some
sense this behaves like a huge loop unrolling. Some of the used repeating macros are shown
in Listing 5.

6

1 #define REP0(X)
2 #define REP1(X) X
3 #define REP2(X) REP1(X) REP1(X)
4 #define REP3(X) REP2(X) REP1(X)
5 //[...]
6 #define REP9(X) REP8(X) REP1(X)
7 #define REP10(X) REP9(X) REP1(X)
8 #define REP20(X) REP10(X) REP10(X)
9 //[...]

10 #define REP100(X) REP50(X) REP50(X)

Listing 5: Macros for bulk repeating instructions

The simple kernel in Listing 6 reads 8 bytes (a[i]) and writes 8 bytes (a[i]) while performing
128 FLOPs in total. Therefore this represents a 128/16 =

8/1 OI kernel.

1 #pragma omp parallel for
2 for(size_t i=0; i<size; i++){
3 a[i] = REP100(a[i]*)
4 REP20(a[i]*)
5 REP8(a[i]*)
6 REP1(a[i]);
7 }

Listing 6: Simple 8 OI kernel

For the most part things mentioned already in Section 3.2 hold true for the 8 OI FMA aware
kernel too. Please refer to Section 3.2 for more detailed information about the rationale behind.
Compiling this with -O2 -mavx -mfma yields an obviously correct result. However if one wants
to make use of packed doubles -Ofast has to be used which optimizes the code further so that
the disassembly is hard to grasp. Anyway it seems that with -Ofast at least no malicious
read/writes are introduced.

The FMA aware kernel in Listing 7 reads 8 bytes (a[i]) and writes 8 bytes (a[i] but only once
per iteration), totalling 16 bytes. Please keep in mind that intermediate a[i] are not written back
but instead (at least with -O2 or better) held in a register. There is only one vmovsd instruction
for writing the value back in each iteration. The kernel executes 64 ∗ 2 = 128 FLOPs. Therefore
this is a 128/16 =

8/1 OI kernel.

1 #pragma omp parallel for
2 for(size_t i=0; i<size; i++){
3 REP60(a[i] = a[i] * a[i] + a[i];)
4 REP4(a[i] = a[i] * a[i] + a[i];)
5 }

Listing 7: FMA aware 8 OI kernel

7

3.3.1 Some Further 8/1 Kernel

Since some effort was put in getting results near peak performance -Ofast -ffast-math was
used to stretch compiler optimization to the maximum. Unfortunately -ffast-math does
not preserve strict IEEE compliance. It is therefore allowed to ignore non-associativity of
floating point operations. For example x = x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x can be optimized to
x ∗ = x;x ∗ = x;x ∗ = x;. Clearly this has an effect on the OI of the kernel. To test fastmath
the kernel in Listing 8 was introduced. Mind that a[i] is written out only once and held in
registers during a single iteration.

1 #pragma omp parallel for
2 for(size_t i=0; i<size; i++){
3 REP100(a[i]=a[i]*a[i];);
4 REP20(a[i]=a[i]*a[i];);
5 REP8(a[i]=a[i]*a[i];);
6 }

Listing 8: FMA aware 8 OI kernel with fastmath correctness

Since the results were still not satisfying another kernel 8/1 OI kernel which makes use of
handcrafted compiler intrinsics was introduced too. This kernel makes full use of the 256-
bit-packed-doubles fused-multiply-add floating-point operation the FMA unit of the processor
provides. The kernel can be seen in Listing 9. At least in theory this should yield peak
performance. The disassembly under full optimization (options can be seen in Makefile)
behaves very much like handwritten assembly.

1 #pragma omp parallel for
2 for(size_t i=0; i<(size -4); i+=4){
3 // pack doubles
4 __m256d packvec = _mm256_set_pd(a[i], a[i+1], a[i+2], a[i+3]);
5

6 REP60(packvec = _mm256_fmadd_pd(packvec , packvec , packvec););
7 REP4(packvec = _mm256_fmadd_pd(packvec , packvec , packvec););
8

9 a[i] = packvec [0];
10 a[i+1] = packvec [1];
11 a[i+2] = packvec [2];
12 a[i+3] = packvec [3];
13 }

Listing 9: FMA aware 8 OI kernel with intrinsics

References

[1] Lars Bergstrom. NUMA-STREAM. url: https://github.com/larsbergstrom/NUMA-
STREAM (visited on 06/20/2016).

8

https://github.com/larsbergstrom/NUMA-STREAM
https://github.com/larsbergstrom/NUMA-STREAM

[2] Lars Bergstrom. stream.c. url: https://github.com/larsbergstrom/NUMA-STREAM/
blob/e5aa9ca4a77623ff6f1c2d5daa7995565b944506/stream.c#L286 (visited on 06/20/2016).

[3] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined Volumes:
1, 2A, 2B, 2C, 3A, 3B, 3C and 3D. Intel. Apr. 2016. url: https://www-ssl.intel.
com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-manual-325462.pdf.

[4] Intel. Intel Intrinsics Guide: vfmadd132pd. url: https://software.intel.com/sites/
landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132pd&expand=2365
(visited on 06/19/2016).

[5] Intel. Intel Intrinsics Guide: vfmadd132sd. url: https://software.intel.com/sites/
landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132sd&expand=2365,
2403 (visited on 06/19/2016).

[6] Intel Ark. Intel® Core™ i5-4210U Processor Specifications. url: http://ark.intel.com/
products/81016/ (visited on 06/19/2016).

[7] Anand Lal Shimpi. Haswell’s Wide Execution Engine. Oct. 5, 2012. url: http://www.
anandtech.com/show/6355/intels-haswell-architecture/8 (visited on 06/19/2016).

[8] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an insightful visual
performance model for multicore architectures”. In: Communications of the ACM 52.4
(2009), pages 65–76.

9

https://github.com/larsbergstrom/NUMA-STREAM/blob/e5aa9ca4a77623ff6f1c2d5daa7995565b944506/stream.c#L286
https://github.com/larsbergstrom/NUMA-STREAM/blob/e5aa9ca4a77623ff6f1c2d5daa7995565b944506/stream.c#L286
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132pd&expand=2365
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132pd&expand=2365
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132sd&expand=2365,2403
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132sd&expand=2365,2403
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX2,FMA&text=vfmadd132sd&expand=2365,2403
http://ark.intel.com/products/81016/
http://ark.intel.com/products/81016/
http://www.anandtech.com/show/6355/intels-haswell-architecture/8
http://www.anandtech.com/show/6355/intels-haswell-architecture/8

	Introduction
	Roofline Model
	Theoretical Peak Performance
	Memory Bandwidth
	Graph

	Kernels
	1/16 = 1/16. Or: The Fancy Arithmetics of a Compiler
	The 1/16 OI Kernel
	The 8 OI Kernel
	Some Further 8/1 Kernel

