
High Performance Computing

Reduction trees for MPI Reductions
Project 2

Johannes Winklehner
1226104

Armin Friedl
1053597

June 24, 2016

Contents
1 Problem Description 2

2 Implemented Algorithms 2
2.1 Binomial Tree Reduce . 3
2.2 Fibonacci Tree Reduce . 4
2.3 Binary Tree Reduce . 5

3 Results 5
3.1 Process Count . 6
3.2 Array Size . 6

4 Analysis 8

5 Appendix 8

1

1 Problem Description
The purpose of this project is to compare different implementations of the collective communi-
cation call MPI_Reduce. The compared implementations should all use different forms of Tree
Reduction algorithms. As a baseline for the comparison serves a given implementation of the
MPI standard, which is in our case NEC MPI.

Binomial Tree A binomial tree has a non-fixed degree where each tree Bi has exactly i subtrees
of size B0 to Bi−1. The number of nodes in such a tree is equal to 2i and the depth is i.

Fibonacci Tree The Fibonacci tree uses a fixed degree of 2 where a tree of size Fi has one
subtree of size Fi−1 and one of Fi−2. Therefore the number of nodes in this kind of tree
is fib(i + 3) − 1 using the Fibonacci function fib(x) = fib(x − 1) + fib(x − 2) and its
depth is as well i.

Binary Tree The binary tree used for reduction is a common complete binary tree where a tree
Ti has two subtrees Ti−1. Such a tree has 2i+1 − 1 nodes and its depth is as for the other
types i.

Bi

Bi−1 Bi−2 . . . B0

Fi

Fi−1 Fi−2

Ti

Ti−1 Ti−2

All three implementations of the reduce function must use exactly the same interface as
the MPI standard defines it. This interface is shown in Listing 1. This requires that all
implementations support any arbitrary MPI datatype as well as operations. The standard
also provides some constraints regarding the associativity and commutativity of executable
operations. Every MPI operation must be associative, but does not necessarily have to be
commutative. This means that all results of the operation must be computed in the MPI rank
order of all processes.

1 int MPI_Reduce (const void *sendbuf , void *recvbuf , int count ,
MPI_Datatype datatype , MPI_Op op , int root , MPI_Comm comm)

Listing 1: MPI Reduce interface

The standard also defines additional features of the reduce function, for example an in
place operator for the root process. However since those details where not mentioned in the
assignment description, we did not consider them as part of the project.
The basic algorithm for a tree reduction, which will be shown in the next section, is very

similar for all kinds of trees and uses Point-to-Point communication between tree nodes. The
assumption for our implementations to be efficient is that the underlying communication
network is fully connected and allows for bidirectional communication.

2 Implemented Algorithms
The basic algorithm for a tree reduction is very simple and is shown in Algorithm 1. At first the
parent and all child nodes have to be determined to know the communication partners of each

2

process. Then each process receives the partial results from all of its children and calculates its
own result from the received data. To ensure the correctness of the result for non commutative
operations the iteration of child nodes has to be done in rank order. Processes which are leaf
nodes in the tree have no children and therefore skip the receiving part of the algorithm. If a
process has a parent and is therefore not the root process, it sends its result to the determined
parent node. However if the process is the root process the reduction is finished and can be
returned.

Algorithm 1: Tree Reduce
Input: An array ~a of a given datatype with size count for each process
Output: The result of the reduction on the root process

1 determine parent and children;
2 result = ~a;
3 forall child in children do
4 receive result from child;
5 result = local reduce of received array and result;
6 end
7 if parent exists then
8 send result to parent;
9 else

10 output = result;
11 end

The calculation of the parent and child nodes is the only aspect which has to be changed for
all possible kinds of trees. However there are of course certain optimizations possible where
some knowledge about the structure of the tree can be used. Such implementation details will
be shown in the following part. The code for all our implementations can be found in the
Appendix in Section 5.

2.1 Binomial Tree Reduce

The first of the three implementations we completed was the binomial tree reduction. Since
there were already some examples and explanations on how reductions and broadcasts work
on binomial trees presented during the lectures, this was probably the most straight forward
part of the project. When looking at some trees of different sizes we quickly noticed, that the
position of each node is static and the tree only grows in one direction. This fact can be used in
a sense that the children do not have to be precomputed but instead can be calculated during
the loop before the corresponding receive operation. A comparison between a B2 and a B3 tree
is shown in Figure 1.

From some of those trees we then determined that for the node with rank r the child in each
iteration is r + i where i = 1 at the start and is multiplied by 2 after each iteration. Before
each iteration there is an additional condition, which checks if the node has any children left or
if it should send the result.

3

0

1 2

3

0

1 2

3

4

5 6

7

Figure 1: Comparison between a B2 and a B3

0

1 2

3

0

1

2

3

4 5

6

Figure 2: Comparison between a F2 and a F3

2.2 Fibonacci Tree Reduce

The core difference of a Fibonacci tree compared to a binomial tree is the fixed degree of 2. To
guarantee the correct order of the computed operation the position of a node inside the tree is
not only dependent on the rank of the process, but also on the total size of the tree. This is
due to the fact that all ranks in one subtree must be lower than the ranks in the second subtree.
Therefore the position of a node with a certain rank changes depending on the tree size. This
can be seen in the comparison of the trees F2 and F3 in Figure 2.
During the receiving step of the algorithm we do not need a loop any more, since there are

always two or less children for each node. On the other hand the calculation of the children
now has to be done in a loop. As a first step we have to determine the size of the tree which
can contain all processes. This can be done by searching the Fibonacci numbers for the first
value which is greater than the number of processes. Since we know the size of both subtrees
using the Fibonacci numbers we can determine whether a node is supposed to be in the left
or right subtree. When doing this recursively the position of a node and its children can be
calculated. The runtime of this part depends on the size of the tree and is therefore bound by
the Fibonacci numbers.
Now that all communication partners have been determined each process has to execute

4

0

1

2 3

4

5 6

0

1

2

3 4

5

6 7

8

9

10 11

12

13 14

Figure 3: Comparison between a T2 and a T3

at most two receives and afterwards one send command. Noticeable when comparing this
technique to the biomial tree is that there is already one less node in a tree F3 than in the B3.
This means that the binomial tree can handle more processes in the same number of rounds.

2.3 Binary Tree Reduce

The reduction using a binary tree can be implemented in a very similar way like the Fibonacci
tree since the degree is also two. The key difference is of course the structure of the trees and
therefore the calculation of the children. Again the position of certain nodes changes depending
on the size of the tree since the lower ranks must be in the left subtree and the higher ones in
the right subtree. The structure of such trees can be shown rather nice because they are simply
complete binary trees. There is again a comparison between a tree T2 and T3 which is shown in
Figure 3.

The tree size as well as the computation of the child nodes can be done using a logarithmic
function on the number of processes. The rest works in exactly the same way as the previously
explained algorithms. When structuring the tree like this the drawback is that in each round a
node receives data from both children. As a result the number of rounds for this algorithm is
the size of the tree plus an additional round.

3 Results
Before we compared the runtime of our algorithms the correctness has to be tested by a
reasonable amount. As already stated in the project description this process can be done easily
by comparing each result to the MPI_Reduce function. This can be done for all implementations
at once to quickly test them for correctness. With this method we tried various combinations
of array sizes, process numbers as well as different operations and the result always turned out
to be correct.

After doing those tests to show the correctness we started doing some benchmarking compar-
isons of our implementations. To do this we utilized 36 nodes of the jupiter system with 16
processes each. We did two kinds of tests which will be explained now to compare the runtime
of our implementations as well as the MPI_Reduce function.

5

3.1 Process Count

For the first benchmark we used a different number of processes to check the scaling of all
methods. The size of the array on each process for this test is 1000. This is a rather low value,
but since we are using tree reduction which is not optimal for high amounts of data such a
value makes sense. The amount of processes used was increased from starting with only one
node up to using all available 36 nodes. On each node all 16 processes where used in all tests.
Therefore the total process count ranged from 16 to 576. For all out tests in this project we
used a repetition count of 30 which allowed us to run a high number of different inputs in a
reasonable amount of time. In Figure 4 the results of this benchmark are shown.

3.2 Array Size

Our second used a fixed number of processes but the size of the local arrays was increasing.
This should show how the different implementations perform for small arrays or even a single
number. But it also shows how they perform with a large amount of data on each process.
The amount of nodes was fixed at 36 for the complete test. The size of the local arrays was
increased by a factor of 10 in each iteration starting with just 1 and increased it up to 1000000.
The number of repetitions is the same as for the last test at 30.

6

0 5 10 15 20 25 30 35

0.
00

0
0.

00
5

0.
01

0
0.

01
5

nodes

tim
e

[s
]

reduce

fib

bin

binom

Figure 4: Average runtimes on 1 to 36 nodes with 16 processes each.

7

4 Analysis
Our first result seen in Figure 4 suggests that our implementation using the binomial tree got
the best results by a big margin. This result was very surprising to us because we expected that
the MPI_Reduce function of the library would outperform our rather simple implementations.
However this seems not to be the case and such tree algorithms are apparently really good
for the dataset tested there. Although the result of the MPI_Reduce function seems to very
unstable and it varies a lot during the test. This might be due to a too low number of repetitions,
the very short execution time or some other factors. That the binary tree performed better than
the Fibonacci tree was also quite surprising, since the communication pattern of the Fibonacci
tree is almost round optimal in contrast to the binary tree.

8

5 Appendix

1 # include <mpi.h>
2 # include <string .h>
3 # include <stdio.h>
4 # include " binom_reduce .h"
5

6 void swap(void **a, void **b) {
7 void *temp;
8 temp = *a;
9 *a = *b;

10 *b = temp;
11 }
12

13 int Binom_Reduce (const void *sendbuf , void *recvbuf , int count ,
14 MPI_Datatype datatype , MPI_Op op , int root , MPI_Comm comm) {
15

16 if (root != 0) {
17 fprintf (stderr , "Sorry , root !=0 not allowed ");
18 return -1;
19 }
20

21 int r, p, size;
22 MPI_Status status ;
23 void *recv;
24 void * reduced ;
25

26 MPI_Comm_rank (comm , &r);
27 MPI_Comm_size (comm , &p);
28 MPI_Type_size (datatype , &size);
29

30 MPI_Alloc_mem (count * size , MPI_INFO_NULL , &recv);
31 MPI_Alloc_mem (count * size , MPI_INFO_NULL , & reduced);
32

33 memcpy (reduced , sendbuf , count * size);
34

35 int i = 1;
36 while ((r + i) % (2 * i) != 0 && i < p) {
37 if (r + i < p) {
38 MPI_Recv (recv , count , datatype , r + i, i, comm , & status);
39 MPI_Reduce_local (reduced , recv , count , datatype , op);
40 swap (& reduced , &recv);
41 }
42 i <<= 1;
43 }
44

9

45 if (r != root) {
46 MPI_Send (reduced , count , datatype , r - i, i, comm);
47 } else {
48 memcpy (recvbuf , reduced , count * size);
49 }
50

51 MPI_Free_mem (reduced);
52 MPI_Free_mem (recv);
53

54 return 0;
55 }

../binom_reduce.c

1 # include <stdio.h>
2 # include <string .h>
3 # include <mpi.h>
4 # include " fib_reduce .h"
5

6 int Fib_Reduce (const void *sendbuf , void *recvbuf , int count ,
7 MPI_Datatype datatype , MPI_Op op , int root , MPI_Comm comm) {
8 if (root != 0) {
9 fprintf (stderr , "Sorry , root !=0 not allowed ");

10 return -1;
11 }
12

13 int r, p, size;
14 MPI_Status status ;
15 void * recv_right ;
16

17 MPI_Comm_rank (comm , &r);
18 MPI_Comm_size (comm , &p);
19 MPI_Type_size (datatype , &size);
20

21 int temp;
22 int right = 1;
23 int fib = 1;
24

25 while (fib - 1 < p) {
26 temp = fib;
27 fib += right;
28 right = temp;
29 }
30

31 int left = fib - right;
32 int i = 0;
33 int parent = 0;

10

34

35 while (i != r) {
36 parent = i;
37 if (r >= i + left) {
38 i += left;
39 temp = left;
40 left = right - left;
41 right = temp;
42 } else {
43 i++;
44 right -= left;
45 left -= right;
46 }
47 }
48

49 if (r == root) {
50 recv_right = recvbuf ;
51 } else {
52 MPI_Alloc_mem (size * count , MPI_INFO_NULL , & recv_right);
53 }
54

55 if (right - 1 > 0 && r + 1 < p) {
56 void * recv_left ;
57 MPI_Alloc_mem (count * size , MPI_INFO_NULL , & recv_left);
58 MPI_Recv (recv_left , count , datatype , r + 1, 0, comm ,

& status);
59 MPI_Reduce_local (sendbuf , recv_left , count , datatype , op);
60

61 if (left - 1 > 0 && r + left < p) {
62 MPI_Recv (recv_right , count , datatype , r + left , 0, comm ,

& status);
63 MPI_Reduce_local (recv_left , recv_right , count , datatype ,

op);
64 } else {
65 memcpy (recv_right , recv_left , count * size);
66 }
67

68 MPI_Free_mem (recv_left);
69 } else {
70 memcpy (recv_right , sendbuf , count * size);
71 }
72

73 if (r != root) {
74 MPI_Send (recv_right , count , datatype , parent , 0, comm);
75 MPI_Free_mem (recv_right);
76 }
77

11

78 return 0;
79 }

../fib_reduce.c

1 # include <stdio.h>
2 # include <string .h>
3 # include <mpi.h>
4 # include " bin_reduce .h"
5

6 int int_log2 (int x) {
7 int r=0;
8 while (x >>= 1) {
9 r++;

10 }
11 return r;
12 }
13

14 int Bin_Reduce (const void *sendbuf , void *recvbuf , int count ,
15 MPI_Datatype datatype , MPI_Op op , int root , MPI_Comm comm) {
16 if (root != 0) {
17 fprintf (stderr , "Sorry , root !=0 not allowed ");
18 return -1;
19 }
20

21 int r, p, size;
22 MPI_Status status ;
23

24 MPI_Comm_rank (comm , &r);
25 MPI_Comm_size (comm , &p);
26 MPI_Type_size (datatype , &size);
27

28 int tree_depth = int_log2 (p) + 1;
29 int i = 0;
30 int depth;
31 int parent = 0;
32

33 // maximum possible number of nodes in a subtree with current
depth

34 int max_nodes = ((1 << tree_depth) - 1) / 2;
35

36 void * recv_left ;
37 void * recv_right ;
38

39 if (r == root) {
40 recv_right = recvbuf ;
41 } else {

12

42 MPI_Alloc_mem (count * size , MPI_INFO_NULL , & recv_right);
43 }
44

45 for (depth = 1; i != r; depth ++) {
46 parent = i;
47 if (r > i + max_nodes) {
48 i += max_nodes + 1;
49 } else {
50 i++;
51 }
52 max_nodes /= 2;
53 }
54

55 if (depth != tree_depth && r + 1 < p) {
56 MPI_Alloc_mem (count * size , MPI_INFO_NULL , & recv_left);
57 MPI_Recv (recv_left , count , datatype , r + 1, 0, comm ,

& status);
58 MPI_Reduce_local (sendbuf , recv_left , count , datatype , op);
59

60 if (r + max_nodes + 1 < p) {
61 MPI_Recv (recv_right , count , datatype , r + max_nodes + 1,

0, comm ,
62 & status);
63 MPI_Reduce_local (recv_left , recv_right , count , datatype ,

op);
64 } else {
65 memcpy (recv_right , recv_left , count * size);
66 }
67

68 MPI_Free_mem (recv_left);
69 } else {
70 memcpy (recv_right , sendbuf , count * size);
71 }
72

73 if (r != root) {
74 MPI_Send (recv_right , count , datatype , parent , 0, comm);
75 MPI_Free_mem (recv_right);
76 }
77

78 return 0;
79 }

../bin_reduce.c

13

	Problem Description
	Implemented Algorithms
	Binomial Tree Reduce
	Fibonacci Tree Reduce
	Binary Tree Reduce

	Results
	Process Count
	Array Size

	Analysis
	Appendix

