High Performance Computing

Roofline

Project 3

Johannes WinklehnerArmin Friedl12261041053597

June 23, 2016

A roofline model for a multicore-processor is obtained by calcuating the theoretical peak performance of the processor and benchmarking the peak memory bandwith. Two artificial computational kernels with arithmetic intensities of $\frac{1}{16}$ GFLOPs/Byte and 8 GFLOPs/Byte are devised. The performance of the two kernels is then compared to the theoretical calculations in the roofline model.

Contents

1	Introduction
2	Roofline Model
	2.1 Theoretical Peak Performance
	2.2 Memory Bandwidth
	2.3 Graph
3	Kernels

1 Introduction

2 Roofline Model

In this section a roofline model [7] will be created for the Intel[®] CoreTM i5-4210U. In Section 2.1 the theoretical floating-point peak performance of the CPU is calculated. Section 2.2 then shows memory bandwidth measurements gathered with NUMA-STREAM [1]. These ingredients are put together into the roofline model which is constructed in Section 2.3.

2.1 Theoretical Peak Performance

The CPU under test was a Intel[®] Core^{\mathbb{M}} i5-4210U. Table 1 shows the relevant specifications for this processor according to Intel Ark [5].

Specification	Value
# of Cores	2
# of Threads	4
Microarchitecture	Haswell
Max Turbo Frequency	$2.7~\mathrm{GHz}$
Processor Base Frequency	$1.7~\mathrm{GHz}$
Instruction Set Extension	SSE $4.1/4.2$, AVX 2.0

Table 1: Relevant processor specifications

According to Intel [3, 5-2 Vol.1] the 4th generation Intel Core processors provide FMA (Fused Multiply-Add) units and AVX (Advanced Vector Extension). Whereas AVX can be the main driver for floating-point peak performance, the peak in this case is mainly determined by the FMA unit.

In general an FMA unit is capable of multiple floating-point (FP) operations during a single cycle. This is directly backed by the hardware (operations are "fused" together). Specifically the FMA unit of a Haswell processor is capable of "[...] 256-bit floating-point instructions to perform computation on 256-bit vectors" [3, 5-28 Vol.1].

Since even a DP (double-precision) FP element has only 64-bit, 256-bit would be obviously overprovisioned. But the FMA instructions do not just take scalars as arguments. Instead up to 4 DP FP elements can be packed together in a vector and operations are conducted pairwise. An example multiply-add instruction is given in [4].

Unfortunately no definite source could be found but according to Shimpi [6] the Haswell architecture is built with 2 FMA units per core. Taking all together we get:

- 1. Two operations are conducted at once ("fused") and up to four DP FP elements can be packed into the argument vectors. At optimal untilization the FMA unit therefore provides 2 * 4 = 8 DP FLOPs each cycle.
- 2. Two cores each with two FMAs can then calculate 2 * 2 * 8 = 32 DP FLOPs

At maximum turbo frequency the processor therefore has a theoretical peak performance of 32 * 2.7 = 86.4 GFLOP/s. At base frequency it is capable of 32 * 1.7 = 54.4 GFLOP/s.

2.2 Memory Bandwidth

To benchmark the memory bandwidth NUMA-STREAM [1] was used. The binary ran on a Fedora 23 system with kernel 4.5.7-200.fc23.x86_64 x86_64 in multi-user.target to turn off as many distractors as possible. Compilation was done with gcc and the following options: -03 -std=c99 -fopenmp -lnuma -DN=80000000 -DNTIMES=100.

Again the details of the processor architecture offer a bit of a challenge. The i5-4210U is hyper threaded meaning it provides 4 hardware threads on 2 physical cores. It is not immediately obvious how many threads NUMA-STREAM should be configured with. For this test both configurations¹ were tested and the best one was chosen. The results for NUMA-STREAM configured with two threads are listed in Listing 1. Prefixes are given in metric scale, i.e. $M = 10^6$ not 2^{20} . The highest achieved rate was 10608 MB/s with the triad function. The triad function is the most demanding kernel of NUMA-STREAM defined at [2] as a[j] = b[j]+scalar*c[j]. All other tested configurations had worse results for all 4 kernels although with at most 300 MB/s difference.

Function	Rate (MB/s)	Avg time	Min time	Max time
Copy:	9373.3846	0.1368	0.1366	0.1390
Scale:	9414.1304	0.1361	0.1360	0.1381
Add:	10614.6002	0.1812	0.1809	0.1835
Triad:	10607.7910	0.1813	0.1810	0.1834

Listing 1: NUMA-STREAM results for two threads

2.3 Graph

The graph of the roofline model is defined by [7]:

Attainable GFLOP/s = Min(Peak FLOP, Peak Memory Bandwidth*Operational Intensity)

The resulting graph for the values obtained in Section 2.1 and Section 2.2 can be seen in Figure 1.

 $^1\mathrm{plus}$ two configurations with 8 and 1 threads respectively for cross checking

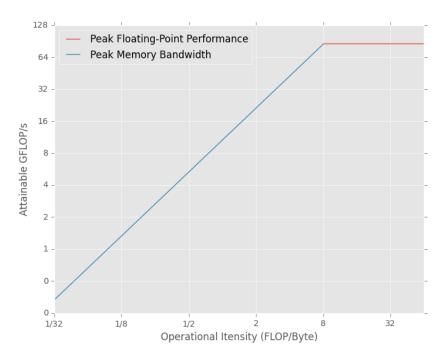


Figure 1: Roofline graph from the values obtained in Section 2.1 and Section 2.2

3 Kernels

References

- Lars Bergstrom. NUMA-STREAM. URL: https://github.com/larsbergstrom/NUMA-STREAM (visited on 06/20/2016).
- [2] Lars Bergstrom. stream.c. URL: https://github.com/larsbergstrom/NUMA-STREAM/ blob/e5aa9ca4a77623ff6f1c2d5daa7995565b944506/stream.c#L286 (visited on 06/20/2016).
- [3] Intel. Intel® 64 and IA-32 Architectures Software Developer's Manual. Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B, 3C and 3D. Intel. Apr. 2016. URL: https://www-ssl.intel. com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architecturessoftware-developer-manual-325462.pdf.
- [4] Intel. Intel Intrinsics Guide. URL: https://software.intel.com/sites/landingpage/ IntrinsicsGuide/#techs=AVX2,FMA&text=madd&expand=2365 (visited on 06/19/2016).
- [5] Intel Ark. Intel[®] Core[™] i5-4210U Processor Specifications. URL: http://ark.intel.com/ products/81016/ (visited on 06/19/2016).
- [6] Anand Lal Shimpi. Haswell's Wide Execution Engine. Oct. 5, 2012. URL: http://www. anandtech.com/show/6355/intels-haswell-architecture/8 (visited on 06/19/2016).
- [7] Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore architectures". In: *Communications of the ACM* 52.4 (2009), pages 65–76.