141 lines
12 KiB
Text
141 lines
12 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib inline\n",
|
|
"\n",
|
|
"from matplotlib import pyplot as plt\n",
|
|
"import numpy as np"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 45,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 2.71828183e+00, 4.00584723e+00, 5.90329225e+00,\n",
|
|
" 8.69949785e+00, 1.28201789e+01, 1.88926982e+01,\n",
|
|
" 2.78415807e+01, 4.10292700e+01, 6.04635568e+01,\n",
|
|
" 8.91032597e+01, 1.31308697e+02, 1.93505536e+02,\n",
|
|
" 2.85163079e+02, 4.20235945e+02, 6.19288618e+02,\n",
|
|
" 9.12626340e+02, 1.34490900e+03, 1.98195049e+03,\n",
|
|
" 2.92073868e+03, 4.30420159e+03, 6.34296777e+03,\n",
|
|
" 9.34743397e+03, 1.37750222e+04, 2.02998210e+04,\n",
|
|
" 2.99152137e+04, 4.40851183e+04, 6.49668652e+04,\n",
|
|
" 9.57396450e+04, 1.41088532e+05, 2.07917773e+05,\n",
|
|
" 3.06401944e+05, 4.51534998e+05, 6.65413057e+05,\n",
|
|
" 9.80598489e+05, 1.44507744e+06, 2.12956560e+06,\n",
|
|
" 3.13827447e+06, 4.62477730e+06, 6.81539020e+06,\n",
|
|
" 1.00436282e+07, 1.48009819e+07, 2.18117459e+07,\n",
|
|
" 3.21432903e+07, 4.73685653e+07, 6.98055788e+07,\n",
|
|
" 1.02870306e+08, 1.51596765e+08, 2.23403430e+08,\n",
|
|
" 3.29222673e+08, 4.85165195e+08])"
|
|
]
|
|
},
|
|
"execution_count": 45,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEDCAYAAAAVyO4LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGDJJREFUeJzt3X90XGd95/H3V79tSfEvyY4T25Ht\nhoDTJY5RnRRC+JHihLQlW3raYw5NoaS47IFd2G2Xw273tGz3H9g95XS3y7Z1IIeQZQmwlJZSQh1o\n2iSncTZ2sFLbMdiJ5ciJrRnJljWWrJFm5rt/zIwtKzPSSJq5PzSf1zlzZnTnGc1X11cfP3rmufcx\nd0dEROKjIewCRERkfhTcIiIxo+AWEYkZBbeISMwouEVEYkbBLSISMzULbjN7yMwSZna4grabzOwJ\nM/uxmb1gZvfWqi4RkbirZY/7K8A9Fbb9T8A33f1WYDfwv2pVlIhI3NUsuN39SeDc9G1mttXMfmBm\nB83sKTN7Y7E5cE3h8QrgtVrVJSISd00Bv99e4GPuftzMbiPfs3438Flgn5n9a6Ad+IWA6xIRiY3A\ngtvMOoC3At8ys+Lm1sL9B4CvuPsfm9nPA4+Y2c+6ey6o+kRE4iLIHncDMOLu20s89wCF8XB3f8bM\n2oAuIBFgfSIisRDYdEB3HwVOmtmvAVjeLYWnXwHuKmx/E9AGJIOqTUQkTqxWVwc0s68D7yTfcx4E\n/hD4e+DPgPVAM/Cou/+RmW0DHgQ6yH9Q+Wl331eTwkREYq5mwS0iIrWhMydFRGKmJh9OdnV1eU9P\nTy2+tYjIknTw4MEhd++upG1FwW1m/UAKyAIZd++drX1PTw8HDhyo5FuLiAhgZqcqbTufHve73H1o\nAfWIiEgVaYxbRCRmKg1uJ39K+kEz21OqgZntMbMDZnYgmdQUbBGRWqk0uO9w9x3Ae4GPm9mdMxu4\n+15373X33u7uisbXRURkASoKbnd/tXCfAL4D7KxlUSIiUt6cwW1m7WbWWXwM7ALmXBxBRERqo5JZ\nJeuA7xSu6NcE/B93/0FNqxIRkbLmDG53fxm4Za52IiL17PGjg7yUvMjH3rG15u+l6YAiIlXwg8Nn\nefif+gN5LwW3iEgVJFITrO1snbthFSi4RUSqIJlK093ZFsh7KbhFRKogkUqz9hr1uEVEYmEyk+Pc\n2KSGSkRE4mLoYhqAtRoqERGJh0SqGNzqcYuIxEJidAJAY9wiInFxpcetoRIRkVhIpNKYQVdHSyDv\np+AWEVmkZGqCNe2tNDUGE6kKbhGRRUqMpgP7YBIU3CIiixbkyTeg4BYRWbQgr1MCCm4RkUXJ5pyh\ni5OBzSgBBbeIyKKcG5skm3MNlYiIxEUiVTj5RkMlIiLxkBjNn3wT1CVdQcEtIrIo6nGLiMTMlR63\ngltEJBYSqTQrljXT1twY2HsquEVEFiHoOdyg4BYRWZSgz5oEBbeIyKLkr1MS3IwSUHCLiCyYu5NM\nBXuBKVBwi4gs2IVLU0xmc4HOKAEFt4jIgl1e+eYaDZWIiMRCcQ63hkpERGIijLMmQcEtIrJgGioR\nEYmZxGia5S2NdLQ2Bfq+Cm4RkQUK46xJmEdwm1mjmf3YzL5Xy4JEROIikQr+5BuYX4/7k8CLtSpE\nRCRukqk03QGf7g4VBreZbQB+EfhSbcsREYmPxGi0h0r+BPg0kCvXwMz2mNkBMzuQTCarUpyISFSN\npTOMTWajOVRiZr8EJNz94Gzt3H2vu/e6e293d3fVChQRiaLLUwEj2uN+G/A+M+sHHgXebWb/u6ZV\niYhEXGK0cPJNFMe43f0/uPsGd+8BdgN/7+6/UfPKREQi7EqPO4JDJSIi8nphDpXM63Qfd/8H4B9q\nUomISIwkUhO0NDawcnlz4O+tHreIyAIkR9N0d7ZiZoG/t4JbRGQBEql04AsoFCm4RUQWIKzrlICC\nW0RkQcJY3b1IwS0iMk8TU1lGxqdCmQoICm4RkXlLhjgVEBTcIiLzdmXlGwW3iEgsJC+vNamhEhGR\nWAjzrElQcIuIzFtiNE2DwZoOBbeISCwkUhOs6WilsSH4syZBwS0iMm/5tSbD6W2DgltEZN4Sowpu\nEZFYSaTSrLsmnBkloOAWEZmXTDbH8Jh63CIisTE8Nok7dKvHLSISD4nRcOdwg4JbRGReEpfPmlRw\ni4jEwpXrlGioREQkFopDJd0hnTUJCm4RkXlJpCZYtbyZlqbw4lPBLSIyD/mzJsMbJgEFt4jIvIS5\nZFmRgltEZB5eGR5jw6plodag4BYRqdCF8SnOj0/Rs6Y91DoU3CIiFeofHgOgp0vBLSISC8Xg3qzg\nFhGJh5NDY5jBptXLQ61DwS0iUqH+oTGuW7GMtubGUOtQcIuIVOjk8Dg9XeH2tkHBLSJSsf6hMW4I\neUYJKLhFRCpyfmySC5em2ByH4DazNjP7f2bWZ2ZHzOw/B1GYiEiUnIzIVECApgrapIF3u/tFM2sG\nnjazx9x9f41rExGJjFOXpwKGP8Y9Z3C7uwMXC182F25ey6JERKLm5NA4DQYbQ54KCBWOcZtZo5kd\nAhLA4+7+bIk2e8zsgJkdSCaT1a5TRCRU/UNjXLdyGa1N4U4FhAqD292z7r4d2ADsNLOfLdFmr7v3\nuntvd3d3tesUEQlV//BY6GdMFs1rVom7jwBPAPfUphwRkehxd04OjYV+camiSmaVdJvZysLjZcB7\ngGO1LkxEJCrOjU2SmshEYkYJVDarZD3wsJk1kg/6b7r792pblohIdFy+KuCa8D+YhMpmlbwA3BpA\nLSIikXRyaByIxhxu0JmTIiJzOjU8lp8KuCoaPW4Ft4jIHE4OjbFh1fJQV3afLhpViIhEWP/wWGSG\nSUDBLSIyK3enf2iczRH5YBIU3CIisxq6OMnFdHSmAoKCW0RkVlFZIHg6BbeIyCxODhWuChiRsyZB\nwS0iMqtTw2M0NhjXr1oWdimXKbhFRGbRPzTOxlXLaG6MTlxGpxIRkQg6ORStqYCg4BYRKcvd83O4\nIzS+DQpuEZGykqk045PZyFyHu0jBLSJSRnFGiYZKRERiojiHO0pTAUHBLSJS1smhcZobjetWtoVd\nylUU3CIiZZwaHmPj6uU0RWgqICi4RUTKitI6k9MpuEVESnB3Tg2PK7hFROJicDTNpaksm7uicznX\nIgW3iEgJUZ0KCApuEZGSrqzsruAWEYmF/qExWhobuG5ldK4KWKTgFhEp4eTQGJvWLKexwcIu5XUU\n3CIiJUR1RgkouEVEXieXy18VMIozSkDBLSLyOi8lL5LO5HjDus6wSylJwS0iMsOhgREAbt20MuRK\nSlNwi4jMcGhghM7WJrZ0dYRdSkkKbhGRGfpOj/DmjStoiOCMElBwi4hcZWIqy7EzKW7ZEM1hElBw\ni4hc5chrF8jknO0bYxzcZrbRzJ4ws6NmdsTMPhlEYSIiYTg0cAEg0sHdVEGbDPC77v68mXUCB83s\ncXc/WuPaREQC1zcwwvoVbay9Jlqr3kw3Z4/b3c+4+/OFxyngReD6WhcmIhKGQwMjke5twzzHuM2s\nB7gVeLbEc3vM7ICZHUgmk9WpTkQkQOfGJnnl3Di3LJXgNrMO4NvAp9x9dObz7r7X3Xvdvbe7u7ua\nNYqIBKLvdP7EmyjPKIEKg9vMmsmH9tfc/S9rW5KISDgOvTJCg8GbN6wIu5RZVTKrxIAvAy+6+xdq\nX5KISDj6To9w49pO2lsrmbcRnkp63G8D7gfebWaHCrd7a1yXiEig3J2+gRFu2Rjt3jZUMB3Q3Z8G\nonnep4hIlbxybpzz41Ns37gq7FLmpDMnRUS4ckXAOPS4FdwiIkDfwAXamhu4KaLX4J5OwS0iAhwa\nOM+/uH4FTY3Rj8XoVygiUmNT2RyHXxuN/PztIgW3iNS9n5xNMZnJsT2iK97MpOAWkbr344F4nDFZ\npOAWkbrXNzDCmvYWNqxaFnYpFVFwi0jdK14RMH+iePQpuEWkro1OTPFS8mLkrwg4nYJbROra4dMX\ncEfBLSISF1c+mIz+GZNFCm4RqWt9AyNs7mpn5fKWsEupmIJbROpa3+mRWPW2QcEtInXszIVLDI6m\nI7/G5EwKbhGpW08fHwKgt2d1yJXMj4JbROrWvqODXLeijZuvuybsUuZFwS0idenSZJanjifZdfO1\nsTnxpkjBLSJ16cnjSSamcuzati7sUuZNwS0idWnfkUFWLGvm5zbHa3wbFNwiUocy2Rw/OjbIXW9c\nS3MMFk6YKX4Vi4gs0nP95xkZn2LXzfEbJgEFt4jUoX1Hz9La1MCdb+gOu5QFUXCLSF1xd/YdGeTt\nN3axvKUp7HIWRMEtInXlyGujvDpyiV3brg27lAVTcItIXdl3dJAGg7vetDbsUhZMwS0idWXfkbP0\n9qxmTUdr2KUsmIJbROrGK8PjHDubiuVJN9MpuEWkbuw7ehYg1uPboOAWkTqy7+ggb7y2k01rlodd\nyqIouEWkLgxfTHOg/xy7bo53bxsU3CJSJ350LEHOif34Nii4RaRO7DtylutXLovdtbdLmTO4zewh\nM0uY2eEgChIRqbaxdIYnjw/xnm3rYnft7VIq6XF/BbinxnWIiNTMkz9NMpnJxfaiUjPNGdzu/iRw\nLoBaRERq4uFn+lm/oo2dMVtbspyqjXGb2R4zO2BmB5LJZLW+rYjIohwaGGH/y+d44I7NNMXw2tul\nVO2ncPe97t7r7r3d3fG8VKKILD17n3yJzrYmdu/cFHYpVbM0/vsRESmhf2iMxw6f5f7bb6CjNZ6X\ncC1FwS0iS9aDT71Mc0MDH35bT9ilVFUl0wG/DjwD3GRmp83sgdqXJSKyOMlUmm8dPM2vvuV61na2\nhV1OVc35t4O7fyCIQkREqumrz/Qzlc3x22/fEnYpVaehEhFZcsbSGb76zCl2bVvH1u6OsMupOgW3\niCw533hugAuXpvidd2wNu5SaUHCLyJIylc3x5adPsrNnNTs2rQq7nJpQcIvIkvK3L5zh1ZFL/M47\nlt7YdpGCW0SWDHfnz//xJW5c28G7borvYsBzUXCLyJLx5PEhjp1NsefOLTQ0xP8qgOUouEVkSZjM\n5Pj8Y8e49po27tt+fdjl1NTSOQdUROra/3ziBEfPjPIX97+Flqal3Sdd2j+diNSFF06P8MUnTvD+\nHddz9xJYU3IuCm4RibWJqSz/7pt9dHe08oe/fHPY5QRCQyUiEmtfePynnEhc5Ksf2cmKZc1hlxMI\n9bhFJLae6z/Hg0+9zAdv28Sdb6ifdQAU3CISS2PpDL/7zT42rFrGf7z3TWGXEygNlYhILH3usWMM\nnB/n0Y/eTvsSWiShEupxi0jsPHU8ySP7T/HA2zZz25Y1YZcTOAW3iMTKicRF/u03+tja3c7v3X1T\n2OWEQsEtIrFxInGR3Xv3A/AX97+FtubGkCsKR30NDIlIbJ1IpNi991kAHt1zGz+ztjPkisKjHreI\nRJ5C+2oKbhGJtOODCu2ZNFQiIpF1fDDFBx4shvbt/Mzapbd+5EKoxy0ikfSjFwcvfxCp0L6aetwi\nEimjE1P8l785yrcOnuaN13byxQ/uWJIrtS+GgltEIuPp40N8+v/2cXZ0go+/ayv/5q4baW2qzyl/\ns1Fwi0joxtIZPvfYMR7Zf4ot3e18+1+9lVuX6Art1aDgFpHQTGVz/O0LZ/jC4z9l4Pw4D9yxmX9/\n9011e2JNpRTcIhK4sXSGR58b4KGnT/LqyCVuXNvBox+9vS6vO7IQCm4RCUwylebhf+rnkf2nuHBp\nip09q/mj+27mXTetXdKrslebgltEaurC+BRP/CTBvqNn+eGLCaayOe7edi173rGFHRrHXhAFt4hU\n3Wsjl/jhi4PsOzLI/peHyeSc7s5Wdv/cRj781h62aHrfoii4RWRRprI5fnI2xaGBEfoGRjg0MMLx\nxEUAtna389E7t7Br2zpu2bBSwyFVouAWkYpksjlOn7/EyeEx+ofyt8OvjXL41QukMzkAVre3sH3j\nSt6/YwPv2bZOZzvWSEXBbWb3AP8daAS+5O6fq2lVIhIYdyeVznBhfIpEaoLEaJpEKk0ylSaRmmBw\nNM2p4TFOn79EJueXX9fR2sSb1ndy/+03cMvGlWzfuJINq5Zhpl51rc0Z3GbWCHwReA9wGnjOzL7r\n7kdrXZxIvXB3cg45d7I5J5PL3+cf5/L3WWcqm2OqcJ/JOZlsjslMjnQmRzqTLdznbxOTWcYns4xP\nZhifzDI2meHSZJaL6QwXLk1dvo1emmJaHl/W2GB0dbSwtrONm69bwS++eT09a9rZ3NXODWva6epo\nUUiHpJIe907ghLu/DGBmjwL3AVUP7l/+06eZmMpW+9sKUOL3MtLcS1dc9uco88RsP/f09/Crthe3\n+dVf+9Wv88I2xwv3xTZXvs55/nGusCE3LaCL27OFx7XS2tRAe2sTy5obaW9tZHlLE6uWt9Czpp0V\ny5qv3JY3093ZytrOVtZ2trG6vYVGjUlHUiXBfT0wMO3r08BtMxuZ2R5gD8CmTZsWVMzW7nYms7kF\nvVbmZsTsl7BMueV+inK9v9l+6ukvsau229XbrHhnmF3Znn9c2GaFFoXnzaDBjIbC98o/nra9If91\noxlmRmPx64YGmhryz0+/b2owmhsbaG5soKnRaG40mhoaaG1qoLW5kZbGBlqb81+3NDXQ1txIe0uT\nwncJqtqHk+6+F9gL0Nvbu6D+w5/svrVa5YiILFmVXI/7VWDjtK83FLaJiEgIKgnu54AbzWyzmbUA\nu4Hv1rYsEREpZ86hEnfPmNkngL8jPx3wIXc/UvPKRESkpIrGuN39+8D3a1yLiIhUQGtOiojEjIJb\nRCRmFNwiIjGj4BYRiRkrd2rxor6pWRI4VfVvXB1dwFDYRcxC9S2O6lsc1bc4i6nvBnfvrqRhTYI7\nyszsgLv3hl1HOapvcVTf4qi+xQmqPg2ViIjEjIJbRCRm6jG494ZdwBxU3+KovsVRfYsTSH11N8Yt\nIhJ39djjFhGJNQW3iEjMLMngNrONZvaEmR01syNm9skSbd5pZhfM7FDh9gcB19hvZv9ceO8DJZ43\nM/sfZnbCzF4wsx0B1nbTtP1yyMxGzexTM9oEuv/M7CEzS5jZ4WnbVpvZ42Z2vHC/qsxrP1Roc9zM\nPhRgff/NzI4V/v2+Y2Yry7x21mOhhvV91sxenfZveG+Z195jZj8pHIufCbC+b0yrrd/MDpV5bRD7\nr2SmhHYMuvuSuwHrgR2Fx53AT4FtM9q8E/heiDX2A12zPH8v8Bj5VbBuB54Nqc5G4Cz5kwNC23/A\nncAO4PC0bf8V+Ezh8WeAz5d43Wrg5cL9qsLjVQHVtwtoKjz+fKn6KjkWaljfZ4Hfq+Df/yVgC9AC\n9M38XapVfTOe/2PgD0LcfyUzJaxjcEn2uN39jLs/X3icAl4kv3ZmnNwHfNXz9gMrzWx9CHXcBbzk\n7qGeCevuTwLnZmy+D3i48Phh4F+WeOndwOPufs7dzwOPA/cEUZ+773P3TOHL/eRXjwpFmf1XicuL\nhbv7JFBcLLyqZqvP8guA/jrw9Wq/b6VmyZRQjsElGdzTmVkPcCvwbImnf97M+szsMTO7OdDC8ouA\n7zOzg4WFlmcqtUhzGP/57Kb8L0yY+w9gnbufKTw+C6wr0SYq+/Ej5P+CKmWuY6GWPlEYynmozJ/5\nUdh/bwcG3f14mecD3X8zMiWUY3BJB7eZdQDfBj7l7qMznn6e/J//twB/CvxVwOXd4e47gPcCHzez\nOwN+/zkVlqp7H/CtEk+Hvf+u4vm/SSM5t9XMfh/IAF8r0ySsY+HPgK3AduAM+eGIKPoAs/e2A9t/\ns2VKkMfgkg1uM2smv4O/5u5/OfN5dx9194uFx98Hms2sK6j63P3Vwn0C+A75P0mni8Iize8Fnnf3\nwZlPhL3/CgaLw0eF+0SJNqHuRzP7MPBLwAcLv9ivU8GxUBPuPujuWXfPAQ+Wed+w918T8H7gG+Xa\nBLX/ymRKKMfgkgzuwpjYl4EX3f0LZdpcW2iHme0kvy+GA6qv3cw6i4/Jf4h1eEaz7wK/WZhdcjtw\nYdqfZEEp29MJc/9N812g+An9h4C/LtHm74BdZraqMBSwq7Ct5szsHuDTwPvcfbxMm0qOhVrVN/0z\nk18p875hLxb+C8Axdz9d6smg9t8smRLOMVjLT2LDugF3kP+T5QXgUOF2L/Ax4GOFNp8AjpD/lHw/\n8NYA69tSeN++Qg2/X9g+vT4Dvkj+E/1/BnoD3oft5IN4xbRtoe0/8v+BnAGmyI8RPgCsAX4EHAd+\nCKwutO0FvjTttR8BThRuvxVgfSfIj20Wj8E/L7S9Dvj+bMdCQPU9Uji2XiAfQOtn1lf4+l7ysyhe\nCrK+wvavFI+5aW3D2H/lMiWUY1CnvIuIxMySHCoREVnKFNwiIjGj4BYRiRkFt4hIzCi4RURiRsEt\nIhIzCm4RkZj5/018YxvDreReAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7ff60c7a3588>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"x = np.linspace(1, 20)\n",
|
|
"y = []\n",
|
|
"\n",
|
|
"w = 500\n",
|
|
"for _x in x:\n",
|
|
" d = 500/1.2**_x\n",
|
|
" d = 10 if d < 10 else d\n",
|
|
" \n",
|
|
" if w > d:\n",
|
|
" w -= d\n",
|
|
" y.append(w)\n",
|
|
" else: \n",
|
|
" y.append(0)\n",
|
|
" \n",
|
|
"y = np.exp\n",
|
|
"\n",
|
|
"plt.plot(x,y)\n",
|
|
"y"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Help on class map in module builtins:\n",
|
|
"\n",
|
|
"class map(object)\n",
|
|
" | map(func, *iterables) --> map object\n",
|
|
" | \n",
|
|
" | Make an iterator that computes the function using arguments from\n",
|
|
" | each of the iterables. Stops when the shortest iterable is exhausted.\n",
|
|
" | \n",
|
|
" | Methods defined here:\n",
|
|
" | \n",
|
|
" | __getattribute__(self, name, /)\n",
|
|
" | Return getattr(self, name).\n",
|
|
" | \n",
|
|
" | __iter__(self, /)\n",
|
|
" | Implement iter(self).\n",
|
|
" | \n",
|
|
" | __new__(*args, **kwargs) from builtins.type\n",
|
|
" | Create and return a new object. See help(type) for accurate signature.\n",
|
|
" | \n",
|
|
" | __next__(self, /)\n",
|
|
" | Implement next(self).\n",
|
|
" | \n",
|
|
" | __reduce__(...)\n",
|
|
" | Return state information for pickling.\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"help(map)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|