finished
This commit is contained in:
parent
d244f4b29b
commit
f82e044c0a
9 changed files with 432 additions and 4 deletions
0
_region_.pdf
Normal file
0
_region_.pdf
Normal file
284
_region_.tex
Normal file
284
_region_.tex
Normal file
|
@ -0,0 +1,284 @@
|
||||||
|
\message{ !name(../upperbounds.tex)}\documentclass[10pt,dvipsnames]{beamer}
|
||||||
|
\usepackage{appendixnumberbeamer}
|
||||||
|
\usepackage{booktabs}
|
||||||
|
\usepackage[scale=2]{ccicons}
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
\usepgfplotslibrary{dateplot}
|
||||||
|
\usepackage{xspace}
|
||||||
|
%\usepackage{graphicx}
|
||||||
|
\usepackage{scalerel}
|
||||||
|
\usepackage[normalem]{ulem}
|
||||||
|
\usepackage[noend]{algorithm2e}
|
||||||
|
|
||||||
|
% == General Beamer Settings ==
|
||||||
|
\usetheme{metropolis}
|
||||||
|
\setbeamertemplate{blocks}[rounded]
|
||||||
|
\metroset{block=fill}
|
||||||
|
\usefonttheme{professionalfonts}
|
||||||
|
\usepackage{mathspec}
|
||||||
|
\setsansfont{Fira Sans Light}
|
||||||
|
\setmathsfont{Oldstyle}
|
||||||
|
|
||||||
|
|
||||||
|
% == Presentation Settings ==
|
||||||
|
\def\thumbsup{\scalerel*{\includegraphics{res/up.png}}{O}}
|
||||||
|
\def\thumbsdown{\scalerel*{\includegraphics{res/down.png}}{O}}
|
||||||
|
|
||||||
|
\subject{Upper Bounds}
|
||||||
|
\title[Upper Bounds]{Treewidth computations I. Upper bounds}
|
||||||
|
\subtitle{Hans L. Bodlaender, Arie M.C.A Koster}
|
||||||
|
\author{Armin Friedl}
|
||||||
|
\date{\today}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\message{ !name(inputs/elimination.tex) !offset(-35) }
|
||||||
|
\begin{frame}{Table of contents}
|
||||||
|
\setbeamertemplate{section in toc}[sections numbered]
|
||||||
|
\setbeamertemplate{subsection in toc}[square]
|
||||||
|
\tableofcontents[sections={2}]
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Idea}
|
||||||
|
|
||||||
|
\begin{frame}{Idea}
|
||||||
|
\setbeamercolor{block title}{fg=RoyalBlue!70}
|
||||||
|
\begin{block}{Theorem {\normalfont \small \color{black} \cite{bodlaender2010, gavril1974}}}
|
||||||
|
Equivalent:
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item $G$ has a treewidth at most k.
|
||||||
|
\item There is an elimination ordering $\pi$, such that no vertex $v\in V$ has more than $k$ neighbours with a higher number in $\pi$ in $G^+_\pi$
|
||||||
|
\end{enumerate}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\setbeamercolor{block title}{fg=ForestGreen!70}
|
||||||
|
\begin{block}{Application}
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Take \emph{some} elimination ordering $\pi$ of $G$
|
||||||
|
\item Construct $G^+_\pi$, calculate $k$
|
||||||
|
\item $\xrightarrow{(i)~\equiv~(ii)}$ Upper Bound for treewidth
|
||||||
|
\end{enumerate}
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{What is $\bf G^+_\pi$ ?}
|
||||||
|
\metroset{block=transparent}
|
||||||
|
\begin{columns}[c]
|
||||||
|
\begin{column}{0.5\textwidth}
|
||||||
|
|
||||||
|
\begin{block}{}\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\node[shape=circle,draw=black] (A) at (0,0) {A};
|
||||||
|
\only<2>{\node[shape=circle,fill=mLightGreen] (A) at (0,0) {A};}
|
||||||
|
\only<3->{\node[shape=circle,fill=mDarkTeal,text=white] (A) at (0,0) {A};}
|
||||||
|
|
||||||
|
\node[shape=circle,draw=black] (B) at (3,0) {B};
|
||||||
|
\only<2>{\node[shape=circle,fill=mLightBrown] (B) at (3,0) {B};}
|
||||||
|
\only<3>{\node[shape=circle,fill=mLightGreen] (B) at (3,0) {B};}
|
||||||
|
\only<4->{\node[shape=circle,fill=mDarkTeal,text=white] (B) at (3,0) {B};}
|
||||||
|
|
||||||
|
\node[shape=circle,draw=black] (C) at (0,3) {C};
|
||||||
|
\only<2>{\node[shape=circle,fill=mLightBrown] (C) at (0,3) {C};}
|
||||||
|
\only<3>{\node[shape=circle,fill=mLightBrown] (C) at (0,3) {C};}
|
||||||
|
\only<4>{\node[shape=circle,fill=mLightGreen] (C) at (0,3) {C};}
|
||||||
|
\only<5->{\node[shape=circle,fill=mDarkTeal,text=white] (C) at (0,3) {C};}
|
||||||
|
|
||||||
|
\node[shape=circle,draw=black] (D) at (3,3) {D};
|
||||||
|
\only<3>{\node[shape=circle,fill=mLightBrown] (D) at (3,3) {D};}
|
||||||
|
\only<4>{\node[shape=circle,fill=mLightBrown] (D) at (3,3) {D};}
|
||||||
|
\only<5>{\node[shape=circle,fill=mLightGreen] (D) at (3,3) {D};}
|
||||||
|
\only<6->{\node[shape=circle,fill=mDarkTeal,text=white] (D) at (3,3) {D};}
|
||||||
|
|
||||||
|
\node[shape=circle,draw=black] (E) at (1.5,5) {E};
|
||||||
|
\only<4,5>{\node[shape=circle,fill=mLightBrown] (E) at (1.5,5) {E};}
|
||||||
|
\only<6>{\node[shape=circle,fill=mLightGreen] (E) at (1.5,5) {E};}
|
||||||
|
\only<7>{\node[shape=circle,fill=mDarkTeal,text=white] (E) at (1.5,5) {E};}
|
||||||
|
|
||||||
|
\path (A) edge (B);
|
||||||
|
\path (A) edge (C);
|
||||||
|
\path (B) edge (D);
|
||||||
|
\path (C) edge (D);
|
||||||
|
\path (C) edge (E);
|
||||||
|
|
||||||
|
|
||||||
|
\path[style=dashed, color=mLightBrown]<2> (B) edge (C);
|
||||||
|
\only<3->{\path[style=dashed, color=mDarkTeal] (B) edge (C);}
|
||||||
|
|
||||||
|
\path[style=dashed, color=mLightBrown]<4> (E) edge (D);
|
||||||
|
\only<5->{\path[style=dashed, color=mDarkTeal] (E) edge (D);}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{block}{}
|
||||||
|
|
||||||
|
\begin{block}{}\centering
|
||||||
|
$\pi = [\textcolor<2>{mLightGreen}{A}
|
||||||
|
\textcolor<3>{mLightGreen}{,B}
|
||||||
|
\textcolor<4>{mLightGreen}{,C}
|
||||||
|
\textcolor<5>{mLightGreen}{,D}
|
||||||
|
\textcolor<6>{mLightGreen}{,E}]$
|
||||||
|
\end{block}{}
|
||||||
|
\end{column}
|
||||||
|
|
||||||
|
\begin{column}{0.5\textwidth}
|
||||||
|
\only<1-6>{
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\label{alg:fill}
|
||||||
|
\KwIn{$G, \pi$}
|
||||||
|
\KwOut{$G^+_{\pi}$}
|
||||||
|
$H=G$\\
|
||||||
|
\ForEach{$v\in V_G$}{
|
||||||
|
\ForEach{$w, x$ of N$_H$($v$)}{
|
||||||
|
\If{$\pi(w), \pi(x)>\pi(v)$}{
|
||||||
|
\alert<2->{add \{w,x\} to E$_H$}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\KwRet{H}
|
||||||
|
\end{algorithm}
|
||||||
|
}
|
||||||
|
|
||||||
|
\only<7>{
|
||||||
|
\begin{itemize}
|
||||||
|
\item $G^+_\pi$ is chordal
|
||||||
|
\item $G$ is a subgraph of $G^+_\pi$
|
||||||
|
\item $\pi$ is a perfect elimination ordering of $G^+_\pi$
|
||||||
|
\item $tw$ of \emph{subtree graph} (also a tree decomposition) of $G^+_\pi$ is $\text{MAXCLIQUE}(G^+_\pi)-1$ ~\cite{gavril1974}
|
||||||
|
\item There is a tree decomposition algorithm for $G$ with $tw = \text{MAXCLIQUE}(G^+_\pi)-1$, polynomial in n ~\cite{bodlaender2010}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}[c]
|
||||||
|
\centering
|
||||||
|
\alert{How to find \only<1,2>{the best}\only<3>{\sout{the best} a good} elimination ordering?}\\
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\only<2>{
|
||||||
|
\begin{align*}
|
||||||
|
\text{Best} &= G^+_\pi~\text{with Min(MAXCLIQUE}(G^+_\pi))\\
|
||||||
|
&= \text{Computational Infeasible}\\
|
||||||
|
&= \text{see}~\cite{heggernes2006}
|
||||||
|
\end{align*}
|
||||||
|
}
|
||||||
|
|
||||||
|
\only<3>{
|
||||||
|
\small
|
||||||
|
No best. But the smaller the triangulation the better.\\
|
||||||
|
For minimal (not minimum): $\mathcal{O}(n^{2.376})$~\cite{heggernes2006}
|
||||||
|
}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\subsection{Greedy Triangulation}
|
||||||
|
\begin{frame}{Greedy Triangulation - Algorithm}
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\label{alg:greedy}
|
||||||
|
\KwIn{$G(V,E)$}
|
||||||
|
\KwOut{$\pi$}
|
||||||
|
$H=G$\\
|
||||||
|
\For{$i=1$ \KwTo $n$}{
|
||||||
|
Choose $v \in H$ by criterion \alert<2>{X}\\
|
||||||
|
Set $\pi^{-1}(i) = v$\\
|
||||||
|
Eliminate $v$ from $H$ (make $N_H(v)$ a clique and remove $v$)
|
||||||
|
}
|
||||||
|
\KwRet{H}
|
||||||
|
\end{algorithm}
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\uncover<2>{\centering \alert{How to choose X?}}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Greedy Triangulation - Criterion X}
|
||||||
|
\metroset{block=transparent}
|
||||||
|
\begin{block}{Minimum Degree/Greedy Degree}
|
||||||
|
X = $v$ with smallest degree in $H$\\
|
||||||
|
\medskip
|
||||||
|
|
||||||
|
{\small Performs well in practice}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\begin{block}{Greedy Fill In}
|
||||||
|
X = $v$ which causes smallest number of fill edges in $G^+_\pi$\\
|
||||||
|
\hspace{1.8mm} = $v$ with smallest number of pairs of non-adjacent neighbours\\
|
||||||
|
\medskip
|
||||||
|
|
||||||
|
{\small Slightly slower, slightly better bounds than MD/GD on average}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Greedy Triangulation - Advanced Criteria}
|
||||||
|
\metroset{block=transparent}
|
||||||
|
\begin{block}{Lower Bound Based}
|
||||||
|
Eliminate $v$ from $H$, compute lower bound (LB) of treewidth\\
|
||||||
|
Choose $v$ with Min($2*LB+\deg_H(v))$
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\begin{block}{Enhanced Minimum Fill In}
|
||||||
|
Compute LB of $G$\\
|
||||||
|
Choose simplical or almost simplical $v$ with $\deg(v)$ at most LB\\
|
||||||
|
otherwise: Greedy Fill In
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\dots{}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\subsection{Local Search (Tabu Search)}
|
||||||
|
|
||||||
|
\begin{frame}[shrink]{Tabu Search}
|
||||||
|
\begin{block}{General Approach}
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item Keep list of $\alpha$ last solutions to avoid cycling
|
||||||
|
\item Find inital solution [= some elimination ordering]
|
||||||
|
\item Make small change to get \emph{Neighbourhood}
|
||||||
|
\item Select neighbouring solution $\not\in \alpha$ with smallest cost
|
||||||
|
\item Repeat (iii), (iv) some time $\rightarrow$ return best solution
|
||||||
|
\end{enumerate}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\metroset{block=transparent}
|
||||||
|
\begin{block}{Neighbourhood Generation}
|
||||||
|
Swap two vertices in elminiation ordering
|
||||||
|
\end{block}
|
||||||
|
\begin{block}{Step Cost}
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item Width of generated neighbour
|
||||||
|
\item But many neighbours with equal width, better:
|
||||||
|
$\rightarrow w_\pi * n^2 + \sum{v\in V}\vert N^+_\pi(v) \vert{}^2$
|
||||||
|
\end{enumerate}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Chordal Graph Recognition}
|
||||||
|
|
||||||
|
\begin{frame}{Chordal Graph Recognition Heuristics}
|
||||||
|
If it's chordal already, find perfect elminiation ordering (i.e. recognize it):
|
||||||
|
\begin{itemize}
|
||||||
|
\item Maximum Cardinality Search
|
||||||
|
\item Lexicographical Breadth First Search
|
||||||
|
\end{itemize}
|
||||||
|
\dots{} tree decomposition depends on (perfect) elimination ordering found. Mostly determined by algorithms, except for first chosen $v_n$ (from right to left).
|
||||||
|
|
||||||
|
$\rightarrow$ try for all $v$
|
||||||
|
|
||||||
|
$\rightarrow$ adds factor $\mathcal{O}(n)$
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../upperbounds"
|
||||||
|
%%% End:
|
||||||
|
|
||||||
|
\message{ !name(../upperbounds.tex) !offset(-221) }
|
||||||
|
|
||||||
|
\end{document}
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: t
|
||||||
|
%%% End:
|
|
@ -107,8 +107,8 @@
|
||||||
\item $G^+_\pi$ is chordal
|
\item $G^+_\pi$ is chordal
|
||||||
\item $G$ is a subgraph of $G^+_\pi$
|
\item $G$ is a subgraph of $G^+_\pi$
|
||||||
\item $\pi$ is a perfect elimination ordering of $G^+_\pi$
|
\item $\pi$ is a perfect elimination ordering of $G^+_\pi$
|
||||||
\item $tw$ of \emph{subtree graph} (also a tree decomposition) of $G^+_\pi$ is $\text{MAXCLIQUE}(G^+_\pi)-1$ ~\cite{gavril1974}
|
\item $width$ of \emph{subtree graph} (also a tree decomposition) of $G^+_\pi$ is $\text{MAXCLIQUE}(G^+_\pi)-1$ ~\cite{gavril1974}
|
||||||
\item There is a tree decomposition algorithm for $G$ with $tw = \text{MAXCLIQUE}(G^+_\pi)-1$, polynomial in n ~\cite{bodlaender2010}
|
\item There is a tree decomposition algorithm for $G$ with $width = \text{MAXCLIQUE}(G^+_\pi)-1$, polynomial in n ~\cite{bodlaender2010}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -145,7 +145,7 @@
|
||||||
\KwOut{$\pi$}
|
\KwOut{$\pi$}
|
||||||
$H=G$\\
|
$H=G$\\
|
||||||
\For{$i=1$ \KwTo $n$}{
|
\For{$i=1$ \KwTo $n$}{
|
||||||
Choose $v \in H$ by criterion \alert<2>{X}\\
|
Choose $v \in H$ by criteria \alert<2>{X}\\
|
||||||
Set $\pi^{-1}(i) = v$\\
|
Set $\pi^{-1}(i) = v$\\
|
||||||
Eliminate $v$ from $H$ (make $N_H(v)$ a clique and remove $v$)
|
Eliminate $v$ from $H$ (make $N_H(v)$ a clique and remove $v$)
|
||||||
}
|
}
|
||||||
|
@ -156,7 +156,7 @@
|
||||||
\uncover<2>{\centering \alert{How to choose X?}}
|
\uncover<2>{\centering \alert{How to choose X?}}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Greedy Triangulation - Criterion X}
|
\begin{frame}{Greedy Triangulation - Criteria X}
|
||||||
\metroset{block=transparent}
|
\metroset{block=transparent}
|
||||||
\begin{block}{Minimum Degree/Greedy Degree}
|
\begin{block}{Minimum Degree/Greedy Degree}
|
||||||
X = $v$ with smallest degree in $H$\\
|
X = $v$ with smallest degree in $H$\\
|
||||||
|
|
20
inputs/results.tex
Normal file
20
inputs/results.tex
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
\begin{frame}{Greedy Results}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\small
|
||||||
|
\item Average of 50 randomly generated graphs
|
||||||
|
\item Combinations of GreedyFillIn, GreedyDegree, Triangulation Minimisation
|
||||||
|
\item Best Results for combinations with Triangulation Minimisation
|
||||||
|
\item Worst Results for GreedyFillIn alone
|
||||||
|
\item GreedyDegree is fast and perfoming well
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=\linewidth]{res/results}
|
||||||
|
\caption{Results for Greedy Heuristics~\cite{bodlaender2010}}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../upperbounds"
|
||||||
|
%%% End:
|
|
@ -4,6 +4,86 @@
|
||||||
\tableofcontents[sections={3}]
|
\tableofcontents[sections={3}]
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
\subsection{Minimum Separating Vertex Set Heuristic}
|
||||||
|
\begin{frame}{Minimum Separating Vertex Set Heuristic}
|
||||||
|
|
||||||
|
\metroset{block=transparent}
|
||||||
|
\begin{block}{}
|
||||||
|
|
||||||
|
\begin{columns}
|
||||||
|
|
||||||
|
\begin{column}{0.5\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\node[shape=circle,draw=black] (A) at (0,0) {$X_{j_3}$};
|
||||||
|
\node[shape=circle,draw=black] (B) at (3,0) {$X_{j_4}$};
|
||||||
|
\node[shape=circle,draw=black] (C) at (1.5,1.5) {$X_i$};
|
||||||
|
\only<2->{\node[shape=circle,fill=mLightBrown] (C) at (1.5,1.5) {$X_i$};}
|
||||||
|
\node[shape=circle,draw=black] (D) at (0,3) {$X_{j_1}$};
|
||||||
|
\node[shape=circle,draw=black] (E) at (3,3) {$X_{j_2}$};
|
||||||
|
|
||||||
|
\path (A) edge (C);
|
||||||
|
\path (B) edge (C);
|
||||||
|
\path (D) edge (C);
|
||||||
|
\path (E) edge (C);
|
||||||
|
\draw[style=dashed] (E) -- (3,4);
|
||||||
|
\draw[style=dashed] (E) -- (3.8,3.8);
|
||||||
|
\draw[style=dashed] (E) -- (4,3);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{column}
|
||||||
|
\only<3>{
|
||||||
|
\begin{column}{0.5\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\node[shape=circle,fill=mLightBrown] (C) at (0,0) {$S$};
|
||||||
|
\node[shape=circle,fill=mLightBrown] (C1) at (-1,1) {$S \cup W_1$};
|
||||||
|
\node[shape=circle,draw=black] (C11) at (-2,2) {$X_{j_1}$};
|
||||||
|
|
||||||
|
\node[shape=circle,fill=mLightBrown] (C2) at (1,1) {$S \cup W_2$};
|
||||||
|
\node[shape=circle,draw=black] (C22) at (2,2) {$X_{j_2}$};
|
||||||
|
|
||||||
|
\node[shape=circle,fill=mLightBrown] (C3) at (-1,-1) {$S \cup W_3$};
|
||||||
|
\node[shape=circle,draw=black] (C33) at (-2,-2) {$X_{j_3}$};
|
||||||
|
|
||||||
|
\node[shape=circle,fill=mLightBrown] (C4) at (1,-1) {$S \cup W_4$};
|
||||||
|
\node[shape=circle,draw=black] (C44) at (2,-2) {$X_{j_4}$};
|
||||||
|
|
||||||
|
\draw (C) -- (C1) -- (C11);
|
||||||
|
\draw (C) -- (C2) -- (C22);
|
||||||
|
\draw (C) -- (C3) -- (C33);
|
||||||
|
\draw (C) -- (C4) -- (C44);
|
||||||
|
\draw[style=dashed] (C22) -- (2,3);
|
||||||
|
\draw[style=dashed] (C22) -- (2.8,2.8);
|
||||||
|
\draw[style=dashed] (C22) -- (3,2);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{column}
|
||||||
|
}
|
||||||
|
\end{columns}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\only<2>{
|
||||||
|
\begin{block}{}
|
||||||
|
Choose $i\in I$ such that $\vert X_i \vert$ maximal and $G[X_i]$ does not include a clique.
|
||||||
|
\end{block}
|
||||||
|
}
|
||||||
|
|
||||||
|
\only<3>{
|
||||||
|
\begin{block}{}
|
||||||
|
Construct Graph $H_i$:\\
|
||||||
|
$H_i(X_i,E_{H_i}), E_{H_i} = \{\{v,w\} \in X_i\times X_i \vert \{v,w\} \in E \vee \exists j \neq i: v,w \in X_j\}$\\
|
||||||
|
Compute minimum separator $S$; $W_1,\dots{},W_r$ are components\\
|
||||||
|
Construct new tree decomposition
|
||||||
|
\end{block}
|
||||||
|
}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\subsection{Other Algorithms}
|
||||||
|
\begin{frame}{Others}
|
||||||
|
\begin{itemize}
|
||||||
|
\item MinimalTriangulation (same principle as Minimum Separating Vertex Set Heuristic)
|
||||||
|
\item Component Splitting
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
%%% Local Variables:
|
%%% Local Variables:
|
||||||
%%% mode: latex
|
%%% mode: latex
|
||||||
%%% TeX-master: "../upperbounds"
|
%%% TeX-master: "../upperbounds"
|
||||||
|
|
BIN
res/results.png
Normal file
BIN
res/results.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 201 KiB |
BIN
res/widetree.png
Normal file
BIN
res/widetree.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 199 KiB |
BIN
upperbounds.pdf
BIN
upperbounds.pdf
Binary file not shown.
|
@ -9,6 +9,7 @@
|
||||||
\usepackage{scalerel}
|
\usepackage{scalerel}
|
||||||
\usepackage[normalem]{ulem}
|
\usepackage[normalem]{ulem}
|
||||||
\usepackage[noend]{algorithm2e}
|
\usepackage[noend]{algorithm2e}
|
||||||
|
\usepackage{adjustbox}
|
||||||
|
|
||||||
% == General Beamer Settings ==
|
% == General Beamer Settings ==
|
||||||
\usetheme{metropolis}
|
\usetheme{metropolis}
|
||||||
|
@ -20,10 +21,13 @@
|
||||||
\setmathsfont{Oldstyle}
|
\setmathsfont{Oldstyle}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% == Presentation Settings ==
|
% == Presentation Settings ==
|
||||||
\def\thumbsup{\scalerel*{\includegraphics{res/up.png}}{O}}
|
\def\thumbsup{\scalerel*{\includegraphics{res/up.png}}{O}}
|
||||||
\def\thumbsdown{\scalerel*{\includegraphics{res/down.png}}{O}}
|
\def\thumbsdown{\scalerel*{\includegraphics{res/down.png}}{O}}
|
||||||
|
|
||||||
|
\usetikzlibrary{graphs}
|
||||||
|
|
||||||
\subject{Upper Bounds}
|
\subject{Upper Bounds}
|
||||||
\title[Upper Bounds]{Treewidth computations I. Upper bounds}
|
\title[Upper Bounds]{Treewidth computations I. Upper bounds}
|
||||||
\subtitle{Hans L. Bodlaender, Arie M.C.A Koster}
|
\subtitle{Hans L. Bodlaender, Arie M.C.A Koster}
|
||||||
|
@ -48,6 +52,7 @@
|
||||||
\input{inputs/separators}
|
\input{inputs/separators}
|
||||||
|
|
||||||
\section{Results}
|
\section{Results}
|
||||||
|
\input{inputs/results}
|
||||||
|
|
||||||
\begin{frame}[allowframebreaks]{References}
|
\begin{frame}[allowframebreaks]{References}
|
||||||
\nocite{bodlaender2010}
|
\nocite{bodlaender2010}
|
||||||
|
@ -55,6 +60,45 @@
|
||||||
\bibliographystyle{abbrv}
|
\bibliographystyle{abbrv}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}[standout]
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\node {Thanks!}
|
||||||
|
[grow=up]
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
}
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)
|
||||||
|
child [draw=white, fill=white, shape=circle] {[fill] circle (0.2em)}
|
||||||
|
};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
%%% Local Variables:
|
%%% Local Variables:
|
||||||
|
|
Loading…
Reference in a new issue