Treewidth computations I. Upper bounds

Hans L. Bodlaender, Arie M.C.A Koster

Armin Friedl June 30, 2016

- 1. Motivation
- 2. Elimination Ordering Methods
- 3. Separator Methods
- 4. Results

Motivation

- 1. Choose infeasible problem
 - Combinatorial Problems
 - Computational Biology
 - Constraint Satisfaction
 - ...
- 2. Find FPT_{tw} algorithm
- 3. Model problem as graph
- 4. Compute tree composition with small tree width

- 1. Choose infeasible problem
 - Combinatorial Problems
 - Computational Biology
 - Constraint Satisfaction
 - ...
- 2. Find FPT_{tw} algorithm
- 3. Model problem as graph
- 4. Compute tree composition with small tree width
- 5. Tract the intractable

We want (efficiently)

- High Lower Bound: Tree dec. not the right tool
- Low Upper Bound: Tree dec. works
- · Other combinations? -- Not so useful

What this paper is about

Exact algorithm: Huge constant factor [4]

- $\rightarrow~{\rm Find}$ a non-optimal tree decomposition
- ightarrow This is also an Upper Bound

Elimination Ordering Methods

2. Elimination Ordering Methods

Idea

- Greedy Triangulation
- Local Search (Tabu Search)
- Chordal Graph Recognition

Theorem [1, 2]

Equivalent:

- (i) G has a treewidth at most k.
- (ii) There is an elimination ordering π , such that no vertex $v \in V$ has more than k neighbours with a higher number in π in G_{π}^+

Application

- 1. Take some elimination ordering π of G
- 2. Construct G_{π}^+ , calculate k
- 3. $\xrightarrow{(i) \equiv (ii)}$ Upper Bound for treewidth

$$\pi = [A, B, C, D, E]$$

$$\pi = [A, B, C, D, E]$$

 $\pi = [A, B, C, D, E]$

Input:
$$G, \pi$$

Output: G_{π}^{+}
 $H = G$
foreach $v \in V_{G}$ do
 $\left| \begin{array}{c} \text{foreach } w, x \text{ of } N_{H}(v) \text{ do} \\ | \text{ if } \pi(w), \pi(x) > \pi(v) \text{ then} \\ | \text{ add } \{w, x\} \text{ to } E_{H} \end{array} \right|$
return H

$$\pi = [A, B, C, D, E]$$

$$\pi = [A, B, C, D, E]$$

$$\pi = [A, B, C, D, E]$$

$$\pi = [A, B, C, D, E]$$

- $\cdot \ G_{\pi}^+$ is chordal
- \cdot *G* is a subgraph of G^+_{π}
- + π is a perfect elimination ordering of G_π^+
- width of subtree graph (also a tree decomposition) of G_{π}^+ is MAXCLIQUE $(G_{\pi}^+) - 1$ [2]
- There is a tree decomposition algorithm for G with $width = MAXCLIQUE(G_{\pi}^{+}) - 1$, polynomial in n [1]

How to find the best elimination ordering?

How to find the best elimination ordering?

Best =
$$G_{\pi}^+$$
 with Min(MAXCLIQUE(G_{π}^+))
= Computational Infeasible
= see [3]

How to find the best a good elimination ordering?

No best. But the smaller the triangulation the better. For minimal (not minimum): $\mathcal{O}(n^{2.376})$ [3]

```
Input: G(V, E)

Output: \pi

H = G

for i = 1 to n do

Choose v \in H by criteria X

Set \pi^{-1}(i) = v

Eliminate v from H (make N_H(v) a clique and remove v)

return H
```

```
Input: G(V, E)

Output: \pi

H = G

for i = 1 to n do

Choose v \in H by criteria X

Set \pi^{-1}(i) = v

Eliminate v from H (make N_H(v) a clique and remove v)

return H
```

How to choose X?

Minimum Degree/Greedy Degree

X = v with smallest degree in H

Performs well in practice

Greedy Fill In

X = v which causes smallest number of fill edges in G_{π}^+ = v with smallest number of pairs of non-adjacent neighbours

Slightly slower, slightly better bounds than MD/GD on average

Lower Bound Based

Eliminate v from H, compute lower bound (LB) of treewidth Choose v with ${\rm Min}(2*LB+\deg_H(v))$

Enhanced Minimum Fill In

Compute LB of GChoose simplical or almost simplical v with $\deg(v)$ at most LB otherwise: Greedy Fill In

•••

Tabu Search

General Approach

- (i) Keep list of α last solutions to avoid cycling
- (ii) Find inital solution [= some elimination ordering]
- (iii) Make small change to get Neighbourhood
- (iv) Select neighbouring solution $\notin \alpha$ with smallest cost
- (v) Repeat (iii), (iv) some time \rightarrow return best solution

Neighbourhood Generation

Swap two vertices in elminiation ordering

Step Cost

- (i) Width of generated neighbour
- (ii) But many neighbours with equal width, better:

 $\rightarrow w_{\pi} * n^2 + \sum v \in V |N_{\pi}^+(v)|^2$

If it's chordal already, find perfect elminiation ordering (i.e. recognize it):

- Maximum Cardinality Search
- Lexicographical Breadth First Search

... tree decomposition depends on (perfect) elimination ordering found. Mostly determined by algorithms, except for first chosen v_n (from right to left).

- \rightarrow try for all v
- ightarrow adds factor $\mathcal{O}(n)$

Separator Methods

- 3. Separator Methods
 - Minimum Separating Vertex Set Heuristic
 - Other Algorithms

Minimum Separating Vertex Set Heuristic

Minimum Separating Vertex Set Heuristic

Choose $i \in I$ such that $|X_i|$ maximal and $G[X_i]$ does not include a clique.

Minimum Separating Vertex Set Heuristic

Construct Graph H_i :

 $H_i(X_i, E_{H_i}), E_{H_i} = \{\{v, w\} \in X_i \times X_i | \{v, w\} \in E \lor \exists j \neq i : v, w \in X_j\}$ Compute minimum separator $S; W_1, \ldots, W_r$ are components Construct new tree decomposition

- MinimalTriangulation (same principle as Minimum Separating Vertex Set Heuristic)
- Component Splitting

Results

Greedy Results

- Average of 50 randomly generated graphs
- Combinations of GreedyFillIn, GreedyDegree, Triangulation Minimisation
- Best Results for combinations with Triangulation Minimisation
- Worst Results for GreedyFillIn alone
- GreedyDegree is fast and perfoming well

Figure 1: Results for Greedy Heuristics [1]

References I

H. L. Bodlaender and A. M. Koster. Treewidth computations i. upper bounds.

Information and Computation, 208(3):259 -- 275, 2010.

🔋 F. Gavril.

The intersection graphs of subtrees in trees are exactly the chordal graphs.

Journal of Combinatorial Theory, Series B, 16(1):47 -- 56, 1974.

P. Heggernes.

Minimal triangulations of graphs: A survey. *Discrete Mathematics*, 306(3):297 -- 317, 2006. Minimal Separation and Minimal Triangulation.

H. Röhrig. **Tree Decomposition: A Feasibility Study.** Mactaria theorie 1008

Master's thesis, 1998.

