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General Motivation

1. Choose infeasible problem
• Combinatorial Problems
• Computational Biology
• Constraint Satisfaction
• …

2. Find FPTtw algorithm
3. Model problem as graph
4. Compute tree composition
with small tree width

5. Tract the intractable

P

FPT

W[i]

XP paraNP
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Why Upper Bounds?

We want (efficiently)
• High Lower Bound: Tree dec. not the right tool
• Low Upper Bound: Tree dec. works
• Other combinations? -- Not so useful

What this paper is about

Exact algorithm: Huge constant factor [4]
→ Find a non-optimal tree decomposition
→ This is also an Upper Bound
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Idea

Theorem [1, 2]
Equivalent:
(i) G has a treewidth at most k.
(ii) There is an elimination ordering π, such that no vertex v ∈ V

has more than k neighbours with a higher number in π in G+
π

Application
1. Take some elimination ordering π of G
2. Construct G+

π , calculate k

3. (i) ≡ (ii)−−−−−−→ Upper Bound for treewidth
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What isG+
π ?

A B

C D

E

π = [A,B,C,D,E]

Input: G, π

Output: G+
π

H = G

foreach v ∈ VG do
foreach w, x of NH (v) do

if π(w), π(x) > π(v) then
add {w,x} to EH

return H
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What isG+
π ?

AA BB

CC DD

EE

π = [A,B,C,D,E]

• G+
π is chordal

• G is a subgraph of G+
π

• π is a perfect elimination
ordering of G+

π

• width of subtree graph (also
a tree decomposition) of G+

π

is MAXCLIQUE(G+
π )− 1 [2]

• There is a tree decomposition
algorithm for G with
width = MAXCLIQUE(G+

π )− 1,
polynomial in n [1]
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How to find the best elimination ordering?
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How to find the best elimination ordering?

Best = G+
π with Min(MAXCLIQUE(G+

π ))

= Computational Infeasible
= see [3]
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How to find the best a good elimination ordering?

No best. But the smaller the triangulation the better.
For minimal (not minimum): O(n2.376) [3]
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Greedy Triangulation - Algorithm

Input: G(V,E)

Output: π
H = G

for i = 1 to n do
Choose v ∈ H by criteria X
Set π−1(i) = v

Eliminate v from H (make NH(v) a clique and remove v)
return H

How to choose X?
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Greedy Triangulation - Criteria X

Minimum Degree/Greedy Degree
X = v with smallest degree in H

Performs well in practice

Greedy Fill In
X = v which causes smallest number of fill edges in G+

π

= v with smallest number of pairs of non-adjacent neighbours

Slightly slower, slightly better bounds than MD/GD on average
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Greedy Triangulation - Advanced Criteria

Lower Bound Based
Eliminate v from H , compute lower bound (LB) of treewidth
Choose v with Min(2 ∗ LB + degH(v))

Enhanced Minimum Fill In
Compute LB of G
Choose simplical or almost simplical v with deg(v) at most LB
otherwise: Greedy Fill In

…
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Tabu Search

General Approach
(i) Keep list of α last solutions to avoid cycling
(ii) Find inital solution [= some elimination ordering]
(iii) Make small change to get Neighbourhood
(iv) Select neighbouring solution ̸∈ α with smallest cost
(v) Repeat (iii), (iv) some time→ return best solution

Neighbourhood Generation
Swap two vertices in elminiation ordering

Step Cost
(i) Width of generated neighbour
(ii) But many neighbours with equal width, better:

→ wπ ∗ n2 +
∑

v ∈ V |N+
π (v)|2
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Chordal Graph Recognition Heuristics

If it's chordal already, find perfect elminiation ordering (i.e.
recognize it):

• Maximum Cardinality Search
• Lexicographical Breadth First Search

… tree decomposition depends on (perfect) elimination ordering
found. Mostly determined by algorithms, except for first chosen vn
(from right to left).

→ try for all v

→ adds factor O(n)
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Minimum Separating Vertex Set Heuristic

Xj3 Xj4

Xi

Xj1 Xj2

14



Minimum Separating Vertex Set Heuristic

Xj3 Xj4

XiXi

Xj1 Xj2

Choose i ∈ I such that |Xi| maximal and G[Xi] does not include a
clique.
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Minimum Separating Vertex Set Heuristic

Xj3 Xj4

XiXi

Xj1 Xj2

S

S ∪W1

Xj1

S ∪W2

Xj2

S ∪W3

Xj3

S ∪W4

Xj4

Construct Graph Hi:
Hi(Xi, EHi), EHi = {{v, w} ∈ Xi×Xi|{v, w} ∈ E∨∃j ̸= i : v, w ∈ Xj}
Compute minimum separator S;W1, . . . ,Wr are components
Construct new tree decomposition 14



Others

• MinimalTriangulation (same principle as Minimum Separating
Vertex Set Heuristic)

• Component Splitting
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Results



Greedy Results

• Average of 50 randomly generated graphs
• Combinations of GreedyFillIn, GreedyDegree, Triangulation Minimisation
• Best Results for combinations with Triangulation Minimisation
• Worst Results for GreedyFillIn alone
• GreedyDegree is fast and perfoming well

Figure 1: Results for Greedy Heuristics [1]
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Thanks!
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