\begin{frame}{Table of contents} \setbeamertemplate{section in toc}[sections numbered] \setbeamertemplate{subsection in toc}[square] \tableofcontents[sections={3}] \end{frame} \subsection{Minimum Separating Vertex Set Heuristic} \begin{frame}{Minimum Separating Vertex Set Heuristic} \metroset{block=transparent} \begin{block}{} \begin{columns} \begin{column}{0.5\textwidth} \begin{tikzpicture} \node[shape=circle,draw=black] (A) at (0,0) {$X_{j_3}$}; \node[shape=circle,draw=black] (B) at (3,0) {$X_{j_4}$}; \node[shape=circle,draw=black] (C) at (1.5,1.5) {$X_i$}; \only<2->{\node[shape=circle,fill=mLightBrown] (C) at (1.5,1.5) {$X_i$};} \node[shape=circle,draw=black] (D) at (0,3) {$X_{j_1}$}; \node[shape=circle,draw=black] (E) at (3,3) {$X_{j_2}$}; \path (A) edge (C); \path (B) edge (C); \path (D) edge (C); \path (E) edge (C); \draw[style=dashed] (E) -- (3,4); \draw[style=dashed] (E) -- (3.8,3.8); \draw[style=dashed] (E) -- (4,3); \end{tikzpicture} \end{column} \only<3>{ \begin{column}{0.5\textwidth} \begin{tikzpicture} \node[shape=circle,fill=mLightBrown] (C) at (0,0) {$S$}; \node[shape=circle,fill=mLightBrown] (C1) at (-1,1) {$S \cup W_1$}; \node[shape=circle,draw=black] (C11) at (-2,2) {$X_{j_1}$}; \node[shape=circle,fill=mLightBrown] (C2) at (1,1) {$S \cup W_2$}; \node[shape=circle,draw=black] (C22) at (2,2) {$X_{j_2}$}; \node[shape=circle,fill=mLightBrown] (C3) at (-1,-1) {$S \cup W_3$}; \node[shape=circle,draw=black] (C33) at (-2,-2) {$X_{j_3}$}; \node[shape=circle,fill=mLightBrown] (C4) at (1,-1) {$S \cup W_4$}; \node[shape=circle,draw=black] (C44) at (2,-2) {$X_{j_4}$}; \draw (C) -- (C1) -- (C11); \draw (C) -- (C2) -- (C22); \draw (C) -- (C3) -- (C33); \draw (C) -- (C4) -- (C44); \draw[style=dashed] (C22) -- (2,3); \draw[style=dashed] (C22) -- (2.8,2.8); \draw[style=dashed] (C22) -- (3,2); \end{tikzpicture} \end{column} } \end{columns} \end{block} \only<2>{ \begin{block}{} Choose $i\in I$ such that $\vert X_i \vert$ maximal and $G[X_i]$ does not include a clique. \end{block} } \only<3>{ \begin{block}{} Construct Graph $H_i$:\\ $H_i(X_i,E_{H_i}), E_{H_i} = \{\{v,w\} \in X_i\times X_i \vert \{v,w\} \in E \vee \exists j \neq i: v,w \in X_j\}$\\ Compute minimum separator $S$; $W_1,\dots{},W_r$ are components\\ Construct new tree decomposition \end{block} } \end{frame} \subsection{Other Algorithms} \begin{frame}{Others} \begin{itemize} \item MinimalTriangulation (same principle as Minimum Separating Vertex Set Heuristic) \item Component Splitting \end{itemize} \end{frame} %%% Local Variables: %%% mode: latex %%% TeX-master: "../upperbounds" %%% End: