structdecomp/inputs/elimination.tex

241 lines
7.8 KiB
TeX
Raw Normal View History

2016-06-26 22:30:37 +00:00
\begin{frame}{Table of contents}
\setbeamertemplate{section in toc}[sections numbered]
\setbeamertemplate{subsection in toc}[square]
\tableofcontents[sections={2}]
\end{frame}
\subsection{Idea}
2016-06-29 14:06:02 +00:00
\begin{frame}{Idea}
\setbeamercolor{block title}{fg=RoyalBlue!70}
\begin{block}{Theorem {\normalfont \small \color{black} \cite{bodlaender2010, gavril1974}}}
Equivalent:
\begin{enumerate}[(i)]
\item $G$ has a treewidth at most k.
\item There is an elimination ordering $\pi$, such that no vertex $v\in V$ has more than $k$ neighbours with a higher number in $\pi$ in $G^+_\pi$
\end{enumerate}
\end{block}
2016-06-26 22:30:37 +00:00
2016-06-29 14:06:02 +00:00
\setbeamercolor{block title}{fg=ForestGreen!70}
\begin{block}{Application}
\begin{enumerate}
\item Take \emph{some} elimination ordering $\pi$ of $G$
\item Construct $G^+_\pi$, calculate $k$
\item $\xrightarrow{(i)~\equiv~(ii)}$ Upper Bound for treewidth
\end{enumerate}
\end{block}
2016-06-26 22:30:37 +00:00
\end{frame}
2016-06-29 14:06:02 +00:00
\begin{frame}{What is $\bf G^+_\pi$ ?}
\metroset{block=transparent}
\begin{columns}[c]
\begin{column}{0.5\textwidth}
\begin{block}{}\centering
\begin{tikzpicture}
\node[shape=circle,draw=black] (A) at (0,0) {A};
\only<2>{\node[shape=circle,fill=mLightGreen] (A) at (0,0) {A};}
\only<3->{\node[shape=circle,fill=mDarkTeal,text=white] (A) at (0,0) {A};}
\node[shape=circle,draw=black] (B) at (3,0) {B};
\only<2>{\node[shape=circle,fill=mLightBrown] (B) at (3,0) {B};}
\only<3>{\node[shape=circle,fill=mLightGreen] (B) at (3,0) {B};}
\only<4->{\node[shape=circle,fill=mDarkTeal,text=white] (B) at (3,0) {B};}
\node[shape=circle,draw=black] (C) at (0,3) {C};
\only<2>{\node[shape=circle,fill=mLightBrown] (C) at (0,3) {C};}
\only<3>{\node[shape=circle,fill=mLightBrown] (C) at (0,3) {C};}
\only<4>{\node[shape=circle,fill=mLightGreen] (C) at (0,3) {C};}
\only<5->{\node[shape=circle,fill=mDarkTeal,text=white] (C) at (0,3) {C};}
\node[shape=circle,draw=black] (D) at (3,3) {D};
\only<3>{\node[shape=circle,fill=mLightBrown] (D) at (3,3) {D};}
\only<4>{\node[shape=circle,fill=mLightBrown] (D) at (3,3) {D};}
\only<5>{\node[shape=circle,fill=mLightGreen] (D) at (3,3) {D};}
\only<6->{\node[shape=circle,fill=mDarkTeal,text=white] (D) at (3,3) {D};}
\node[shape=circle,draw=black] (E) at (1.5,5) {E};
\only<4,5>{\node[shape=circle,fill=mLightBrown] (E) at (1.5,5) {E};}
\only<6>{\node[shape=circle,fill=mLightGreen] (E) at (1.5,5) {E};}
\only<7>{\node[shape=circle,fill=mDarkTeal,text=white] (E) at (1.5,5) {E};}
\path (A) edge (B);
\path (A) edge (C);
\path (B) edge (D);
\path (C) edge (D);
\path (C) edge (E);
\path[style=dashed, color=mLightBrown]<2> (B) edge (C);
\only<3->{\path[style=dashed, color=mDarkTeal] (B) edge (C);}
\path[style=dashed, color=mLightBrown]<4> (E) edge (D);
\only<5->{\path[style=dashed, color=mDarkTeal] (E) edge (D);}
\end{tikzpicture}
\end{block}{}
\begin{block}{}\centering
$\pi = [\textcolor<2>{mLightGreen}{A}
\textcolor<3>{mLightGreen}{,B}
\textcolor<4>{mLightGreen}{,C}
\textcolor<5>{mLightGreen}{,D}
\textcolor<6>{mLightGreen}{,E}]$
\end{block}{}
\end{column}
\begin{column}{0.5\textwidth}
\only<1-6>{
\begin{algorithm}[H]
\label{alg:fill}
\KwIn{$G, \pi$}
\KwOut{$G^+_{\pi}$}
$H=G$\\
\ForEach{$v\in V_G$}{
\ForEach{$w, x$ of N$_H$($v$)}{
\If{$\pi(w), \pi(x)>\pi(v)$}{
\alert<2->{add \{w,x\} to E$_H$}
}
}
}
\KwRet{H}
\end{algorithm}
}
\only<7>{
\begin{itemize}
\item $G^+_\pi$ is chordal
\item $G$ is a subgraph of $G^+_\pi$
\item $\pi$ is a perfect elimination ordering of $G^+_\pi$
2016-06-29 23:36:46 +00:00
\item $width$ of \emph{subtree graph} (also a tree decomposition) of $G^+_\pi$ is $\text{MAXCLIQUE}(G^+_\pi)-1$ ~\cite{gavril1974}
\item There is a tree decomposition algorithm for $G$ with $width = \text{MAXCLIQUE}(G^+_\pi)-1$, polynomial in n ~\cite{bodlaender2010}
2016-06-29 14:06:02 +00:00
\end{itemize}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[c]
\centering
\alert{How to find \only<1,2>{the best}\only<3>{\sout{the best} a good} elimination ordering?}\\
\bigskip
\only<2>{
\begin{align*}
\text{Best} &= G^+_\pi~\text{with Min(MAXCLIQUE}(G^+_\pi))\\
&= \text{Computational Infeasible}\\
&= \text{see}~\cite{heggernes2006}
\end{align*}
}
\only<3>{
\small
No best. But the smaller the triangulation the better.\\
For minimal (not minimum): $\mathcal{O}(n^{2.376})$~\cite{heggernes2006}
}
\end{frame}
\subsection{Greedy Triangulation}
\begin{frame}{Greedy Triangulation - Algorithm}
\begin{algorithm}[H]
\label{alg:greedy}
\KwIn{$G(V,E)$}
\KwOut{$\pi$}
$H=G$\\
\For{$i=1$ \KwTo $n$}{
2016-06-29 23:36:46 +00:00
Choose $v \in H$ by criteria \alert<2>{X}\\
2016-06-29 14:06:02 +00:00
Set $\pi^{-1}(i) = v$\\
Eliminate $v$ from $H$ (make $N_H(v)$ a clique and remove $v$)
}
\KwRet{H}
\end{algorithm}
\bigskip
\uncover<2>{\centering \alert{How to choose X?}}
\end{frame}
2016-06-29 23:36:46 +00:00
\begin{frame}{Greedy Triangulation - Criteria X}
2016-06-29 14:06:02 +00:00
\metroset{block=transparent}
\begin{block}{Minimum Degree/Greedy Degree}
X = $v$ with smallest degree in $H$\\
\medskip
{\small Performs well in practice}
\end{block}
\begin{block}{Greedy Fill In}
X = $v$ which causes smallest number of fill edges in $G^+_\pi$\\
\hspace{1.8mm} = $v$ with smallest number of pairs of non-adjacent neighbours\\
\medskip
{\small Slightly slower, slightly better bounds than MD/GD on average}
\end{block}
\end{frame}
\begin{frame}{Greedy Triangulation - Advanced Criteria}
\metroset{block=transparent}
\begin{block}{Lower Bound Based}
Eliminate $v$ from $H$, compute lower bound (LB) of treewidth\\
Choose $v$ with Min($2*LB+\deg_H(v))$
\end{block}
\begin{block}{Enhanced Minimum Fill In}
Compute LB of $G$\\
Choose simplical or almost simplical $v$ with $\deg(v)$ at most LB\\
otherwise: Greedy Fill In
\end{block}
\dots{}
\end{frame}
\subsection{Local Search (Tabu Search)}
\begin{frame}[shrink]{Tabu Search}
\begin{block}{General Approach}
\begin{enumerate}[(i)]
\item Keep list of $\alpha$ last solutions to avoid cycling
\item Find inital solution [= some elimination ordering]
\item Make small change to get \emph{Neighbourhood}
\item Select neighbouring solution $\not\in \alpha$ with smallest cost
\item Repeat (iii), (iv) some time $\rightarrow$ return best solution
\end{enumerate}
\end{block}
\metroset{block=transparent}
\begin{block}{Neighbourhood Generation}
Swap two vertices in elminiation ordering
\end{block}
\begin{block}{Step Cost}
\begin{enumerate}[(i)]
\item Width of generated neighbour
\item But many neighbours with equal width, better:
$\rightarrow w_\pi * n^2 + \sum{v\in V}\vert N^+_\pi(v) \vert{}^2$
\end{enumerate}
\end{block}
\end{frame}
\subsection{Chordal Graph Recognition}
\begin{frame}{Chordal Graph Recognition Heuristics}
If it's chordal already, find perfect elminiation ordering (i.e. recognize it):
\begin{itemize}
\item Maximum Cardinality Search
\item Lexicographical Breadth First Search
\end{itemize}
\dots{} tree decomposition depends on (perfect) elimination ordering found. Mostly determined by algorithms, except for first chosen $v_n$ (from right to left).
$\rightarrow$ try for all $v$
$\rightarrow$ adds factor $\mathcal{O}(n)$
\end{frame}
2016-06-26 22:30:37 +00:00
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../upperbounds"
%%% End: