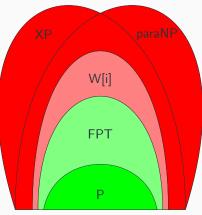
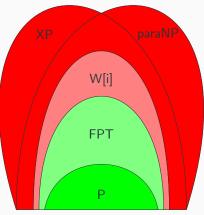
Treewidth computations I. Upper bounds


Hans L. Bodlaender, Arie M.C.A Koster

Armin Friedl June 27, 2016


- 1. Motivation
- 2. Elimination Ordering Methods
- 3. Separator Methods
- 4. Results

Motivation

- 1. Choose infeasible problem
 - Combinatorial Problems
 - Computational Biology
 - Constraint Satisfaction
 - ...
- 2. Find FPT_{tw} algorithm
- 3. Model problem as graph
- 4. Compute *tree composition* with small *tree width*

- 1. Choose infeasible problem
 - Combinatorial Problems
 - Computational Biology
 - Constraint Satisfaction
 - ...
- 2. Find FPT_{tw} algorithm
- 3. Model problem as graph
- 4. Compute *tree composition* with small *tree width*
- 5. Tract the intractable

We want (efficiently)

- High Lower Bound: Tree dec. not the right tool
- Low Upper Bound: Tree dec. works
- Other combinations? Not so useful

What this paper is about

Exact algorithm: Huge constant factor [2]

- $\rightarrow\,$ Find a non-optimal tree decomposition
- $\rightarrow\,$ This is also an Upper Bound

Elimination Ordering Methods

- 2. Elimination Ordering Methods
 - Idea
 - Test1
 - Test2
 - Idea
 - Test1
 - Test2

- 2. Elimination Ordering Methods
 - Idea
 - Test1
 - Test2
 - Idea
 - Test1
 - Test2

Separator Methods

Results

H. L. Bodlaender and A. M. Koster.

Treewidth computations i. upper bounds.

Information and Computation, 208(3):259 – 275, 2010.

H. Röhrig.

Tree Decomposition: A Feasibility Study.

Master's thesis, 1998.