aoc2024/day13.py

205 lines
6.3 KiB
Python
Raw Normal View History

2024-12-16 17:27:16 +00:00
#!/usr/bin/env python3
from dataclasses import dataclass
from typing import Tuple
import re
from ortools.linear_solver import pywraplp
from ortools.math_opt.python import mathopt
@dataclass
class Claw:
button_a: Tuple[int, int]
button_b: Tuple[int, int]
prize: Tuple[int, int]
claws = []
with open("day13") as f:
l = f.readline()
while l:
if l == '\n':
l = f.readline()
continue
button_a = re.match(r"Button A: X\+([0-9]+), Y\+([0-9]+).*", l).groups()
button_b = re.match(r"Button B: X\+([0-9]+), Y\+([0-9]+).*", f.readline()).groups()
prize = re.match(r"Prize: X=([0-9]+), Y=([0-9]+).*", f.readline()).groups()
c = Claw(
button_a=(int(button_a[0]), int(button_a[1])),
button_b=(int(button_b[0]), int(button_b[1])),
prize=(int(prize[0]), int(prize[1]))
)
claws.append(c)
l = f.readline()
def part1():
# (k * b_a.x) + (j * b_b.x) - x = (k * b_a.y) + (j * b_b.y) - y
# cost = k*3 + j
def gensol(claw: Claw):
for k in range(100):
for j in range(100):
left = (k*claw.button_a[0]) + (j*claw.button_b[0]) - claw.prize[0]
right = (k*claw.button_a[1]) + (j*claw.button_b[1]) - claw.prize[1]
if left == 0 and right == 0:
yield (k,j)
def cost(k,j):
return k*3 + j
res = 0
for claw in claws:
min_cost = 500*3
for (k,j) in gensol(claw):
sol_cost = cost(k,j)
print(f"Found cost for claw {claw}. k={k}, j={j}, cost={sol_cost}")
if sol_cost < min_cost:
min_cost = sol_cost
if min_cost != 500*3:
res += min_cost
print(res)
def part2():
# UPDATE: In fact all that below works perfectly fine if one understands
# `add` as normal addition instead of concatenation. But for historical
# reference:
#
# lots of math transformations later...
#
# I think this is correct. It works with part1 at least.
#
# It does not work with part2. I do think it could be "only" numerical errors
# due to floating point math. Or this whole math is BS. That's very possible
# too.
#
# - tried high precision math libs, didn't work
# - tried searching around the proximity of the "exact" solution, didn't work
# !!!!! THAT'S NOT WHAT IS MEANT WITH ADD !!!!!!!
#
# uncomment this to make it fail
# for claw in claws:
# prize_x = int("10000000000000" + str(claw.prize[0]))
# prize_y = int("10000000000000" + str(claw.prize[1]))
# claw.prize = (prize_x, prize_y)
for claw in claws:
prize_x = 10000000000000 + claw.prize[0]
prize_y = 10000000000000 + claw.prize[1]
claw.prize = (prize_x, prize_y)
def gensol(claw: Claw):
a_x = claw.button_a[0]
a_y = claw.button_a[1]
b_x = claw.button_b[0]
b_y = claw.button_b[1]
p_x = claw.prize[0]
p_y = claw.prize[1]
epsilon = 0.00001
y = ((a_y*p_x)-(a_x*p_y))/((b_x*a_y)-(a_x*b_y))
print(f"{y:.200f}")
x = ((p_x - (y*b_x))/a_x)
print(f"{x:.200f}")
if x>0 and abs(y - round(y)) <= epsilon and y>0 and abs(x - round(x)) <= epsilon:
return (x, y)
# print(f"y = (({a_y}*{p_x})-({a_x}*{p_y})) / (({b_x}*{a_y})-({a_x}*{b_y})), x = (({p_x} - ({y}*{b_x})) / {a_x})")
# we found a solution in R but quite likely contains numerical errors
# search the proximity for an exact match
# epsilon = 0.0001
# if x > 0 and y > 0:
# for i in range(-100,100):
# for j in range(-100,100):
# if abs(((x+i) * a_x) + ((y+j) * b_x) - p_x) < epsilon and abs(((x+i) * a_y) + ((y+j) * b_y) - p_y) < epsilon:
# return (int(x),int(y))
def cost(k,j):
return k*3 + j
res = 0
for i,claw in enumerate(claws):
print(f"running claw {i+1} of {len(claws)}")
sol = gensol(claw)
if sol:
k,j = sol
sol_cost = cost(k,j)
print(f"Found cost for claw {claw}. k={k}, j={j}, cost={sol_cost}")
print(f"{claw.prize[0]}={k*claw.button_a[0]+j*claw.button_b[0]}")
res += sol_cost
print(res)
def part2_get_the_bfg():
sol = 0
for i, claw in enumerate(claws):
solver = pywraplp.Solver.CreateSolver("SAT")
if not solver:
return
infinity = solver.infinity()
x = solver.IntVar(lb=0.0, ub=infinity, name="x")
y = solver.IntVar(lb=0.0, ub=infinity, name="y")
solver.Add(x*claw.button_a[0] + y*claw.button_b[0] <= claw.prize[0])
solver.Add(x*claw.button_a[0] + y*claw.button_b[0] >= claw.prize[0])
solver.Add(x*claw.button_a[1] + y*claw.button_b[1] <= claw.prize[1])
solver.Add(x*claw.button_a[1] + y*claw.button_b[1] >= claw.prize[1])
solver.Minimize(3*x + y)
status = solver.Solve()
if status == pywraplp.Solver.OPTIMAL:
x = x.solution_value()
y = y.solution_value()
sol += solver.Objective().Value()
print(f"Claw {i: >3}: {x=:>20.3f}\t{y=:>20.3f}\t{solver.Objective().Value()=:.2f} [{claw}]")
else:
print(f"Claw {i: >3}: no solution")
print(f"{sol:.5f}")
def part2_get_the_bfg2():
sol = 0
for i, claw in enumerate(claws):
model = mathopt.Model()
x = model.add_variable(lb=0.0, name="x")
y = model.add_variable(lb=0.0, name="y")
model.add_linear_constraint(x*claw.button_a[0] + y*claw.button_b[0] <= claw.prize[0])
model.add_linear_constraint(x*claw.button_a[0] + y*claw.button_b[0] >= claw.prize[0])
model.add_linear_constraint(x*claw.button_a[1] + y*claw.button_b[1] <= claw.prize[1])
model.add_linear_constraint(x*claw.button_a[1] + y*claw.button_b[1] >= claw.prize[1])
model.minimize(3*x + y)
result = mathopt.solve(model, mathopt.SolverType.GLOP)
if result.termination.reason != mathopt.TerminationReason.OPTIMAL:
print(f"model failed to solve: {result.termination}")
else:
print("MathOpt solve succeeded")
print("Objective value:", result.objective_value())
print("x:", result.variable_values()[x])
print("y:", result.variable_values()[y])
x = result.variable_values()[x]
y = result.variable_values()[y]
epsilon = 0.001
if x>0 and y>0 and abs(x - round(x)) <= epsilon and abs(y - round(y)) <= epsilon:
sol += result.objective_value()
print(f"{sol:.5f}")